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Deformable cardiac surface 
tracking by adaptive estimation 
algorithms
E. Erdem Tuna 1*, Dominique Franson 2, Nicole Seiberlich 3 & M. Cenk Çavuşoğlu 1

This study presents a particle filter based framework to track cardiac surface from a time sequence 
of single magnetic resonance imaging (MRI) slices with the future goal of utilizing the presented 
framework for interventional cardiovascular magnetic resonance procedures, which rely on the 
accurate and online tracking of the cardiac surface from MRI data. The framework exploits a low-
order parametric deformable model of the cardiac surface. A stochastic dynamic system represents 
the cardiac surface motion. Deformable models are employed to introduce shape prior to control the 
degree of the deformations. Adaptive filters are used to model complex cardiac motion in the dynamic 
model of the system. Particle filters are utilized to recursively estimate the current state of the system 
over time. The proposed method is applied to recover biventricular deformations and validated 
with a numerical phantom and multiple real cardiac MRI datasets. The algorithm is evaluated with 
multiple experiments using fixed and varying image slice planes at each time step. For the real cardiac 
MRI datasets, the average root-mean-square tracking errors of 2.61 mm and 3.42 mm are reported 
respectively for the fixed and varying image slice planes. This work serves as a proof-of-concept study 
for modeling and tracking the cardiac surface deformations via a low-order probabilistic model with 
the future goal of utilizing this method for the targeted interventional cardiac procedures under 
MR image guidance. For the real cardiac MRI datasets, the presented method was able to track the 
points-of-interests located on different sections of the cardiac surface within a precision of 3 pixels. 
The analyses show that the use of deformable cardiac surface tracking algorithm can pave the way 
for performing precise targeted intracardiac ablation procedures under MRI guidance. The main 
contributions of this work are twofold. First, it presents a framework for the tracking of whole cardiac 
surface from a time sequence of single image slices. Second, it employs adaptive filters to incorporate 
motion information in the tracking of nonrigid cardiac surface motion for temporal coherence.

The magnetic resonance imaging (MRI) guided interventions are getting widespread applications in clinical 
settings due to MRI’s high soft tissue contrast and radiation-free imaging. MRI catheterization is one such emerg-
ing technology, where CMR is being used for guiding catheters for diagnostic and interventional  purposes1. 
MRI-guided diagnostic cardiac catheterization is employed for accurately measuring the pulmonary vascular 
resistance. MRI-guided targeted interventional cardiac procedures includes catheter ablation for the treatment 
of ventricular tachycardia and atrial  fibrillation2.

The diagnostic MRI-guided catheter procedures require accurate cardiac segmentation, which provides delin-
eation of the cardiac boundaries, where this boundary information has been widely utilized in the development 
of global and regional quantitative indices, which help to distinguish between pathological and healthy subjects 
in clinical  practice3–5. During the interventional CMR procedures accurate and real-time tracking of the cardiac 
surface from image data is needed for surgical planning as well as reliable ablation of the desired target area via 
navigating a manual or a robotic  instrument6. All these procedures require the modeling and computation of 
the cardiac surface deformations as heart goes through a nonrigid motion.

This work presents a method for modeling and tracking the cardiac surface deformations via a low-order 
probabilistic model with the future goal of utilizing this approach for the interventional cardiac procedures under 
MR image guidance. The goal is to model the shape and surface of the heart, so that the proposed approach 
could be employed in targeted cardiac interventions such as cardiac catheter ablation procedures, where the 
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non-periodic motion of the heart is critical. For this purpose, it incorporates motion information in the surface 
tracking to make the algorithm more robust to rapid and dynamic cardiac shape changes for the cases when the 
heart motion statistics change abruptly and significantly, such as during arrhythmias. The aim of the presented 
study is not to utilize discrete measurements to extract and track individual features, hence it is not intended for 
diagnostic procedures that prioritize clinical measurements, such as inferring ejection ratios of the ventricles, 
strain values, and other quantitative indices.

Object tracking is a challenging task with numerous applications in computer vision, where given the initial-
ized state such as the location and the size of an arbitrary target of interest in a frame of a video, the aim of track-
ing is to estimate the states of the target in the subsequent frames the best possible  accuracy7. Much progress has 
been made in recent years, where deep learning and correlation filter based approaches have gained increasing 
 attention8–11. Lately, there has been a growing interest in applying machine and deep learning based methods to 
cardiac motion segmentation and tracking  problems12–15. The clinical applications of these techniques has been 
primarily focused on the diagnostic cases to assess cardiac function such as by providing accurate estimation of 
the right and left ventricular volumes, ejection ratios, and other quantitative indices, which is not the focus of 
this study. A recent  study16 compares various CMR software packages for such purposes.

Modeling deformation has become a key research topic in medical image  analysis17, surgical  simulation18,19, 
medical image  registration20,21, cardiac motion  recovery22–25, cardiac image segmentation and functional 
 analysis3–5,26,27.

Traditional cardiac motion segmentation and tracking approaches can be broken down  into4 image  based28, 
classification  based29, and deformable model  based30 approaches. Deformable models;  snakes31, level-set 
 evolution32, and its  variants33,34, have been extensively applied to the ventricle tracking and segmentation prob-
lems. They are effective tools for cardiac motion reconstruction. Although the term deformable models originally 
referred to active contours/snakes presented by Kass et al.31, in this study it is used for their extensions to surface 
and volumetric models with  superquadrics35. A concise introduction to deformable models, its extensions, and 
applications to medical image segmentation can be found  in33.

Chen et al.36 applied superquadrics with tapering and bending deformations to model the left-ventricle (LV) 
for image segmentation and shape analysis. Deformable models with parameter functions are presented  in37,38 to 
analyze the LV motion. Haber et al.39 extended parametric functions to recover the right-ventricle (RV) motion, 
and Park et al.40,41 used deformable models for RV-LV modeling and conducting 4D cardiac functional analysis 
via finite element modeling (FEM). More recently, Wang et al.42 introduced meshless deformable models for 3D 
cardiac motion and strain analysis from tagged MRI.

Incorporating priors is an important aspect of solving cardiac segmentation and tracking problems. The use 
of priors such as shape, motion, or texture could aid in these tasks by increasing their robustness and  accuracy3. 
Integrating shape priors has been widely studied, whereas using motion information has taken less attention, 
partly due to the complexity and the variability of the heart motion but also solely using end-diastole (ED) 
and end-systole (ES) image segmentations are sufficient for estimating cardiac diagnostic functions in clini-
cal  practice4. Various previous work studied motion prior in the context of spatiotemporal atlases of cardiac 
 motion43–46.

Motion prior has different purpose respectively in segmentation and tracking problems. In the segmentation 
problem, the goal is the delineation of the surface boundaries in each image and thus utilizing motion informa-
tion introduces temporal coherence in the extracted borders. In contrast, the tracking problem aims to recover 
the trajectories of the target material points on the cardiac surface, which is essential in the image-guided robotic 
interventions, where motion information provides temporally consistent  trajectories47.

A number of previous studies tried to incorporate motion information into cardiac tracking. If minimum 
temporal information is available, then a weak temporal prior information could be integrated via temporal 
position  averaging47. In contrast, information regarding expected cardiac motion could be incorporated as a 
strong prior. Sequential  approach48–51 propagates the results from previous time step as the initialization for the 
current time step, which models cardiac motion as a Brownian process. Other  approaches52,53 try to learn more 
complex heart dynamics from a prior training set.

Sequential approach assumes no prior knowledge regarding the temporal dynamics of the heart, whereas 
learning-based approaches are limited to the information provided in the training set. Such assumptions would 
be insufficient in the case of arrhythmia, in which heart dynamics goes through abrupt changes.

Utilizing motion priors in cardiac surface tracking in the context of catheter ablation procedures is more 
challenging due to significant changes in heart dynamics during arrhythmia.  In54–56, authors previously showed 
feasibility of employing recursive adaptive filters for tracking point-of-interest motion on cardiac surface respec-
tively under arrhythmia and normal conditions during beating heart surgery.  McEachen57 presented a method 
to track the LV endocardial contour via recursive adaptive filters.

Adaptive filters used in this study have a robustness trait that makes their output (i.e. predicted trajectory) 
less susceptible to disturbances from irregular heart dynamics during  arrhythmia55, thus they could incorporate 
motion information smoother and address the shortcomings of the aforementioned approaches.

This paper presents the cardiac surface tracking as a state estimation problem via Bayesian formulation. Par-
ticle filter based belief propagation facilitates incorporating temporal motion information of the heart. Cardiac 
surface motion is represented as a dynamic system and parameterized by a low-order deformable model, which 
constitutes the system state. Deformable models provide a versatile framework to introduce shape prior to control 
the extent of the deformation. Dynamic model of the system uses adaptive filters to address modeling of complex 
heart motion. Utilizing adaptive filters allows to introduce a priori knowledge about the active cardiac motion 
and thus to recover some movement (like the tangential motion), which cannot be obtained from classical geo-
metrical tracking methods. Particle filters (or Sequential Monte Carlo methods)58 employed in this study provides 
a framework for incorporating the uncertainty into tracking via Markov assumption by only taking information 
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into account from the previous time step to estimate the pose of the object at the current time step. This makes 
such an approach suitable for time-critical, online applications such as targeted cardiac catheter ablations. The 
main contribution of the presented work is incorporating the prior cardiac motion information via adaptive 
filters into the particle filter based tracking of the cardiac surface for targeted cardiac catheter ablations, in con-
trast to the tracking by detection  methods59, which independently detect object and its pose at each time step.

The approach presented here is not limited to modeling the deformation of a particular cardiac chamber. Due 
to more common availability of the validation data, a low-order deformable surface model is applied to recover 
the biventricular geometry and deformations. The deformable model framework was originally developed  in60 
and used for biventricular modeling  in40. Here, it is embedded in the particle filter formulation. An adaptive filter 
is used in the motion update step of the particle filter. It introduces temporal coherence to the tracked cardiac 
surface trajectory. Image slice plane and deformable model intersection yields the measurement model. Tracking 
procedure is validated by a numerical phantom and multiple real cardiac MRI datasets. The approach presented 
here is not limited to a specific type of MRI modality i.e.  cine MRI, tagged MRI, or phase contrast  MRI4. In 
this study, cine MRI datasets are used for validation. A list of studies which explore tracking of local myocardial 
deformations by utilizing tagged and phase contrast MRI modalities can be found  in22,61–63.

Another contribution of this work is the tracking of whole cardiac surface from a time sequence of single 2D 
image slices. Previous works used a single slice to track a specific cardiac contour, utilized either a stack of slices, 
or volumetric data for the recovery of surface or volumetric motion.

The presented cardiac surface tracking approach based upon several assumptions. First, the twisting motion is 
essential in ventricular ejection. If ejection was simply the result of contraction of myocardial fibers, the ejection 
fraction would be 15–20%, whereas the actual ejection fraction of the human heart is 60–70%. This is due to the 
twisting of myocardial  fibers64; hence twisting can not be ignored while modeling cardiac surface deformations. 
Here, interventricular septum  rotation40 is used to recover the twisting motion by assuming LV and RV have 
similar twisting  patterns65,66.

Second, the myocardium is an almost incompressible material. Its constituents are mainly composed of water, 
which is almost perfectly incompressible. Yet, the myocardium is perfused with blood, which affects the its total 
volume over the cardiac cycle. A few  studies67–69 have been carried out to quantify the myocardial volume change 
over the cardiac cycle. The common conclusion was the total myocardial volume changes no more than 4 % 
during a cardiac cycle, meaning the myocardium is not perfectly incompressible. However, this volume change 
is distributed in all three directions. Thus, the parametrized cardiac surface deformations described in  “Dynamic 
system state” section are volume preserving. As the volume change is distributed in all three directions, i.e. the 
myocardial wall thickening would result in longitudinal shortening during systole, this makes it feasible to track 
cardiac surface via a single image slice. Previous studies utilized the incompresibility of the  myocardium70–72.

Additionally, RV wall is three to six times thinner than the LV, reaching the limit of MRI spatial  resolution5. 
Thus, only endocardium of RV is considered, whereas both endocardium and epicardium of LV are modeled.

Finally, the image slices employed in the tracking algorithm assumed to be presegmented; meaning boundaries 
of the RV and LV walls are already delineated when they are used in the measurement update step of the particle 
filter.

Results
The feasibility of the presented approach is initially shown on a numerical phantom with known parameters. 
Then, it is validated with multiple real cardiac MR datasets, each representing a single cardiac cycle.

The tracking performance is evaluated for points-of-interest (POIs) on the cardiac surface. The POIs are 
determined via the intersection of the deformable biventricular model and three MR slice planes corresponding 
to the basal, mid-cavity, and apical sections (Fig. 1a). For the LV, a total of thirty-two points are selected, sixteen 
points each for endocardium and epicardium, based on the 16-point LV  model73; six points for the basal, six 
points for the mid-ventricular, and four points for the apical slices (Fig. 1b). There is no standard model for RV 
segmentation and several different models have been proposed in previous  studies66. An 8-point RV model was 
chosen for the RV endocardium to evaluate the tracking  performance74 (Fig. 1c).

Simulation results. The tracking results for the numerical phantom are given respectively in Tables 1 and 2 
for the 16-point LV epicardium and endocardium models, and in Table 3 for the 8-point RV model. The root-
mean-square (RMS) tracking errors and the standard deviations are reported.

The tracking errors for the numerical phantom is overall within 2 pixels (3 mm). The RMS errors are 
respectively 0.97 mm for the POIs located on LV and 1.56 mm for the POIs located on RV. The overall RMS 
error is 1.11 mm. The proposed algorithm was able to follow the motion of POIs located on LV more precisely 
than the POIs located on RV. Additionally, for both LV and RV, POIs located on the basal and mid-ventricular 
sections were tracked more accurately.

Experiment results. The tracking results for the first experiment are presented respectively in Table 4 and 
in Table 5 for the 16-point LV epicardium and endocardium models, and in Table 6 for the 8-point RV model. 
First, the RMS tracking errors of the 32-point LV and 8-point RV models are computed for each of the eight 
datasets. Then, the averages of these RMS tracking errors across all the eight datasets are calculated and reported 
together with the corresponding standard deviations. The effect of integrating the twisting motion to param-
eterized deformations is also investigated. The results show the tracking errors for both cases when the twisting 
motion included as well as excluded from the parameterized deformations. Figure 2 shows the tracking result of 
an anterior POI position for a mid-ventricular slice.
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The results show that with the fixed slice plane, the tracking errors are within 3 pixels (5.3 mm). The RMS 
errors are respectively 2.30 mm for the POIs on LV and 2.77 mm for the POIs on RV. The overall RMS error is 

Figure 1.  (a) The intersection of the biventricular cardiac model and three MR slice planes corresponding to 
the basal, mid-cavity, and apical sections. (b) 16-point LV model. (c) 8-point RV model. The POI locations of 
the LV and RV segments on the cardiac surface, identified by the indexes in the corresponding 16-point and 
8-point models are as follows: Anterior: LV1, LV7, LV13, RV1, RV4, RV7; Anteroseptal: LV2, LV8; Septal: LV14; 
Inferoseptal: LV3, LV9; Inferior: LV4, LV10, LV15, RV3, RV6, RV8; Lateral: LV16, RV2, RV5; Inferolateral: LV5, 
LV11; Anterolateral: LV6, LV12.

Table 1.  RMS tracking errors of the numerical phantom for the 16-point LV model for the LV epicardium.

Plane location

POI Index

RMS tracking error [mm]

(Std. Dev.) [mm]

LV1 LV2 LV3 LV4 LV5 LV6

Basal
0.79 1.10 1.12 0.68 0.83 1.03

(0.12) (0.21) (0.15) (0.04) (0.12) (0.12)

LV7 LV8 LV9 LV10 LV11 LV12

Mid-ventricular
0.92 0.95 0.73 0.81 0.82 0.55

(0.15) (0.16) (0.05) (0.13) (0.11) (0.16)

LV13 LV14 LV15 LV16

Apical
2.65 2.17 1.69 2.74

(0.41) (0.56) (0.15) (0.28)

Table 2.  RMS tracking errors of the numerical phantom for the 16-point LV model for the LV endocardium.

Plane Location

POI Index

RMS tracking error [mm]

(Std. Dev.) [mm]

LV1 LV2 LV3 LV4 LV5 LV6

Basal
0.76 0.98 1.11 0.72 0.82 1.01

(0.12) (0.18) (0.15) (0.04) (0.11) (0.09)

LV7 LV8 LV9 LV10 LV11 LV12

Mid-ventricular
0.82 1.65 1.07 0.66 1.67 1.20

(0.10) (0.15) (0.11) (0.11) (0.18) (0.11)

LV13 LV14 LV15 LV16

Apical
2.47 1.61 1.56 2.42

(0.30) (0.60) (0.27) (0.18)
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2.37 mm. The error values are not uniform across the surface and changes based on the POI location; indicating 
the deformations are not uniform across the cardiac surface. The model was able to track POIs located on basal 
and mid-ventricular sections more accurately compared to apical sections. Additionally, the tracking accuracy 
for the LV is higher than RV, which shows the parameterized deformations capture the uniform shape of the LV 
better than the nonuniform shape of the RV.

The presented results show that torsional component is an essential part of the LV motion and integrating 
it to the parameterized deformations provide higher tracking accuracy. Without incorporating the twisting 
motion, the RMS errors are respectively 2.52 mm for the POIs on LV and 3.20 mm for the POIs on RV. The 
overall RMS error is 2.61 mm. The relative improvement in the tracking accuracy across the POIs are different 
when the torsion is included in the parameterized deformations. This further shows that the deformations are 
changing throughout the surface.

The results for the second experiment set are given in Table 7. As the slice planes were allowed to change any 
time step, the POIs at each time would be different unless the current slice was randomly chosen to be same as 
the previous one. For LV and RV, respectively 12 (6 for each epicardium and endocardium) and 3 POIs chosen 
per time step (Fig. 8b). Table 7 summarizes the results for the varying slice plane experiments. First, the RMS 
tracking errors of the all POIs tracked during the data duration are computed for each of the eight datasets. Then, 
the averages of these RMS tracking errors across all the eight datasets are calculated and reported together with 
the corresponding standard deviations.

The results show that with the varying slice plane, the tracking errors are within 3 pixels (5.3 mm). The RMS 
errors are respectively 3.12 mm for the POIs located on LV and 3.71 mm for the POIs located on RV. The overall 
RMS error is 3.42 mm. The proposed algorithm was able to track the POIs on LV more accurately then the POIs 
on RV, indicating proposed parameterization captures the deformations for the LV surface better compared to 
the RV surface.

Table 3.  RMS tracking errors of the numerical phantom data for the 8-point RV model.

Plane location

POI index

RMS tracking error (Std. Dev.) [mm]

RV1 RV2 RV3

Basal 1.86 (0.08) 0.29 (0.05) 0.26 (0.10)

RV4 RV5 RV6

Mid-ventricular 0.42 (0.12) 0.30 (0.13) 0.29 (0.10)

RV7 RV8

Apical 1.70 (0.09) 3.58 (0.11)

Table 4.  The summary of the results for the 16-point LV epicardium model. The averages and 
standarddeviations of RMS tracking errors across the eight Cine MR Datasets are given. Results are shown 
with and without the twisting in the deformable model.

Plane Location Model

POI Index

Average RMS Tracking Errors [mm]

(Std. Dev.) [mm]

LV1 LV2 LV3 LV4 LV5 LV6

Basal

Twist
2.35 3.12 2.18 2.13 2.35 2.88

(0.66) (1.29) (1.44) (0.82) (1.65) (1.58)

No Twist
2.68 3.70 2.64 2.76 2.62 3.02

(0.64) (1.43) (1.34) (1.28) (1.72) (1.77)

LV7 LV8 LV9 LV10 LV11 LV12

Mid-ventricular

Twist
2.47 2.67 2.44 1.73 2.19 1.76

(0.92) (0.94) (1.23) (1.63) (1.00) (0.94)

No Twist
2.61 2.75 2.54 1.82 2.28 1.93

(0.87) (0.88) (1.13) (1.57) (0.93) (0.81)

LV13 LV14 LV15 LV16

Apical

Twist
3.45 3.26 2.25 1.85

(1.42) (1.48) (0.60) (0.80)

No Twist
3.89 3.31 2.48 1.95

(1.20) (1.36) (0.77) (0.78)
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Discussion
This work serves a proof-of-concept study for modeling and tracking the cardiac surface deformations via a low-
order probabilistic model. The feasibility of the algorithm is shown with simulations and real cardiac datasets. 
For the real cardiac MRI datasets, where each dataset represents a single cardiac cycle, the presented method 
was able to track the POIs located on different sections of the cardiac surface within 3 pixels of accuracy. For the 
real cardiac MR dataset, the RMS tracking errors are respectively 2.61 mm for the fixed image slice plane and 
3.42 mm for the varying image slice plane.

One of the reasons for using the biventricular deformable model in the proposed method was to utilize the 
relative location of RV with respect to LV during the cardiac cycle to approximate the information regarding the 
twisting motion. As myocardium appears homogeneous in the Cine MR images, Cine MRI does not provide 
sufficient information regarding torsional component of the LV motion. Figure 3 shows the comparison of global 
torsion through the cardiac cycle estimated via Segment software and the algorithm.

It can be observed that initially the proposed method overshoots the estimation of the torsional component. 
Yet, as the transient period settles, it was able to follow the pattern of the twisting motion given by the software. 
The mean torsion estimation error is 0.06 rads (3.7 degs). Incorporating the twisting motion yielded 0.2–0.3 mm 
of improvement in the tracking accuracy. This improvement together with the cardiac surface tracking accuracy 
around 2.6 mm could pave the way for achieving the clinically-desired instrument to target accuracy of less than 

Table 5.  The summary of the results for the 16-point LV endocardium model. The averages and standard 
deviations of RMS tracking errors across the eight Cine MR datasets are given. Results are shown with and 
without the twisting in the deformable model.

Plane Location Model

POI Index

Average RMS tracking errors [mm]

(Std. Dev.) [mm]

LV1 LV2 LV3 LV4 LV5 LV6

Basal

Twist
2.20 3.16 2.72 2.01 1.82 2.63

(1.11) (1.49) (1.10) (1.34) (0.94) (1.07)

No Twist
2.35 3.27 2.83 2.20 1.92 2.86

(1.16) (1.76) (1.13) (1.31) (1.06) (1.19)

LV7 LV8 LV9 LV10 LV11 LV12

Mid-ventricular

Twist
2.40 2.24 2.09 1.23 2.02 1.63

(1.32) (1.19) (0.93) (0.61) (0.85) (0.50)

No Twist
2.64 2.31 2.17 1.65 2.21 2.05

(1.37) (0.95) (0.96) (0.62) (0.87) (0.88)

LV13 LV14 LV15 LV16

Apical

Twist
2.89 2.26 1.58 1.69

(1.38) (0.99) (0.55) (0.83)

No Twist
3.04 2.40 1.95 1.86

(1.45) (1.09) (0.53) (0.82)

Table 6.  The summary of the results for the 8-point RV model. The averages and standard deviations of RMS 
tracking errors across the eight Cine MR datasets are given. Results are shown with and without the twisting in 
the deformable model.

Plane Location Model

POI Index

Average RMS Tracking Errors [mm]

(Std. Dev.) [mm]

RV1 RV2 RV3

Basal
Twist 2.43 (0.95) 2.76 (1.21) 3.02 (1.32)

No Twist 2.48 (0.96) 2.93 (1.40) 3.36 (1.16)

RV4 RV5 RV6

Mid-ventricular
Twist 2.30 (1.27) 2.07 (0.60) 2.82 (1.06)

No Twist 2.63 (1.18) 2.14 (0.62) 3.26 (1.25)

RV7 RV8

Apical
Twist 3.11 (1.15) 3.65 (1.36)

No Twist 3.60 (1.39) 5.18 (1.72)
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3 mm during targeted intracardiac ablation procedures under image guidance, given the ablation catheter can 
be manipulated with enough  precision75.

As this work focused on the feasibility of the presented method, the computational performance was not 
a priority. For a tractable on-line implementation, considerable speedup could be achieved by using a faster 
programming language than MATLAB and parallelization. The computation time could be reduced by 
performing further bench-top experiments to perform an extensive analysis of the system state.

The order of the adaptive filters is selected empirically based on the data duration. The higher the filter 
order, the more past samples it uses for the one-step prediction. This would result in monotonically decreasing 
one-step prediction error in magnitude because if the new filter weights, due to the additional filter order, were 
held to be zero, the same error of the lower order case would be obtained. Yet, storing more past samples and 
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Figure 2.  Shows the tracking results for an anterior POI position for a mid-ventricular slice.

Table 7.  The summary of the results for the varying slice plane experiments. The averages and standard 
deviations of the RMS tracking errors across the eight Cine MR datasets are presented.

Location of POIs

LV Epi LV Endo RV

Mean RMSE (Std. Dev) [mm] 2.99 (1.33) 3.25 (1.40) 3.71 (1.87)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

To
rs

io
n 

[ra
d]

Comparison of the Actual and the Estimated Global Torsion

Model
Actual

Figure 3.  Shows the comparison of global torsion through the cardiac cycle estimated via the Segment software 
and the proposed algorithm. The mean estimation error is 0.06 rads.
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utilizing more information come at the expense of computational load. A more detailed discussion regarding 
this trade-off is given  in54.

The on-line real-time execution of the cardiac surface tracking also requires substantial engineering work 
for improving the real-time image acquisition and  reconstruction76 as well as the low-level interfacing to the 
hardware of the MRI scanner, to be able to control the imaging parameters on-line. This system integration work 
was outside the scope of the present study and has been left for future work.

In this work, multiple real cardiac MR datasets representing the right and left ventricle motion were used for 
evaluation. As such, the order of the parameterizations used to model the cardiac surface is influenced by the 
given datasets. Further testing of the presented approach with additional datasets; i.e.  atrium, tagged MRI, has 
been left for future work.

Using presegmented image slices was one of the assumptions made in this work. On-line segmentation of 
the measured image slices also needs to be handled for a real-time execution of the proposed algorithm. As this 
work focused on surface tracking and not segmentation, the on-line segmentation aspect of the framework will 
be addressed in the future.

The comparison of the presented approach with other methods remains future work. One interesting approach 
would be employing least squares Levenberg-Marquardt estimation in each of the time steps, in addition to the 
initialization as it was used in this study and evaluating the tracking performance of such a detection based 
approach.

Accounting for the positional offsets between the 2D slices that might occur during the cardiac multi-slice 
cine MRI data collection is outside the scope of the presented study. Previous studies investigated this  problem77, 
which would be another avenue to explore as a future work.

In the estimation problem given in (1), the measurement model (48) is a nonlinear function of the state. 
Aside from the nonparametric particle filtering approach employed in this paper, the Extended Kalman filter 
(EKF) and the unscented Kalman filter (UKF) are two Gaussian techniques that could be applied to solve such 
nonlinear systems, where the beliefs (2) and (3) are represented by multivariate normal  distributions78. Since 
2D segmented binary images are used as measurements in this study, the measurement update step would 
primarily influence the computational and memory requirements of these Kalman filtering approaches due to 
the necessary matrix  inversion79. Even for a small 100× 100 pixels image, this would require a 10, 000× 10, 000 
matrix to be inverted. Given the datasets used in the presented work (Table 10) include much larger images, this 
would be an onerous task. In the case of UKF, the matrix inversion needs to be repeated for each sigma  point79, 
making it even more demanding. Additionally, EKF requires the computation of  Jacobians79, which would be 
very challenging for the presented highly nonlinear measurement model (46) to (49). For these reasons, the 
particle filtering approach is utilized in this study to solve the estimation problem in (1).  In80, authors applied 
a dual Kalman filtering technique to the beating heart tracking problem to overcome the drawbacks of EKF, 
where 1D principle component signals are used as measurements that are extracted from 3D motion signals.

The machine and deep learning based methods are other potential avenues to explore for the cardiac surface 
tracking  problem81. The data used in this study would be limited to utilize these approaches for the presented 
work. It remains a future work to adopt these schemes with substantial additional data and compare with the 
presented approach in this paper.

Methods
Problem formulation. This section explains the proposed method to solve the cardiac surface tracking 
problem.

The cardiac surface motion is modeled as a stochastic dynamic system. System state is specified by a 
probability distribution, which is defined over all the possible values that it can take. Consequently, the surface 
tracking problem is formulated as an estimation of the posterior distribution of the system state at each time step 
based on all observed data. A Bayesian approach is utilized for recursively estimating the posterior distribution 
from MR images.

Let xt be the dynamic system state that fully describes the cardiac motion and deformation at time t. Let zt be 
the measurement at time t and z1:t = [z1, z2, . . . , zt] represent the all observed data up till time t. The tracking 
problem is estimating the posterior distribution of the state conditioned on the available data; b(xt) = p(xt |z1:t) , 
which is denoted as the belief of the dynamic system about its current state.

Using Bayes’ theorem, belief distribution  becomes78:

where it is presumed that state xt is complete under Markov assumption; i.e., given xt past measurement 
convey additional information on predicting zt78. In (1), p(zt |xt) is the measurement model, which describes 
the likelihood of the measurement given current system state, b̄t = p(xt |z1:t−1) is the prediction distribution, 
which is the belief before incorporating zt , and η is a normalization constant ensuring final multiplication is a 
probability. Rewriting b̄t via marginalization property:

(1)
p(xt |z1:t) =

p(zt |xt , z1:t−1)p(xt |z1:t−1)

p(z1:t−1)

= ηp(zt |xt)p(xt |z1:t−1),
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In the last line of (2), Markov assumption for the state xt−1 is again exploited; i.e., given the past state xt−1 , the 
present state xt is conditionally independent of the past  measurements78. In (2), p(xt |xt−1) is the motion model 
which describes the stochastic dynamics of the system. Using (2) in (1) gives:

(3) describes the Bayes filter, which recursively estimates the belief at time t from the belief at time t − 1.
Bayes filter can be implemented in several ways depending on the approximations employed regarding the 

representations of motion and measurement models (linear/nonlinear) and belief distributions (Gaussian/
nonparametric). Particle filters are used in this study for the implementation, which represent the posterior 
b(xt) by a finite set of random state samples drawn from this  posterior79.

The particle filter algorithm is given in Algorithm 1. The input of the algorithm is the most recent measurement 
zt and the particle set Xt−1 := x

[1]
t−1, x

[2]
t−1, · · · , x

[Ns]
t−1 representing the posterior b(xt−1) at the previous time step 

t − 1 , where each particle x[m]
t−1 with m = 1, 2, · · · ,Ns is representing an instance of the state at time t − 1 and Ns 

denotes the total number of particles in the set Xt−1.
In Algorithm 1, in order to construct the particle set Xt from the set Xt−1 , initially a temporary particle set 

X̄t−1 is constructed via generating the hypothetical state x[m]
t  from the particle x[m]

t−1 based on the motion model 
(Line 4). Then, for each particle x[m]

t  an importance factor w[m]
t  is calculated based on the measurement model; 

yielding a weighted particle set (Line 5). Finally, the algorithm performs the resampling step, where it draws with 
replacement Ns particles from the set X̄t−1 . The probability of drawing each particle is given by its importance 
weight. After the resampling step, the final particle set Xt is distributed according to the posterior bt in (3). 
Various options exist for the resampling step. A low-variance resampler is used in this  study78.

Dynamic system state. Cardiac motion is a combination of rigid motion and deformations. The deforma-
tion space is infinite-dimensional. A low-dimensional parameterization of this space is needed for a tractable 
implementation of the particle filter. Deformable surface models are chosen for the representation of cardiac 
motion. This section briefly introduces these models and their adaptation to this study. A more thorough treat-
ment of the deformable model framework is given  in35.

In the deformable model framework, depicted in Fig. 4, the positions of the points on the deformed model r 
with respect to an inertial world coordinate frame � are given as:

where s is the reference shape of the model, describing the positions of points on the deformed model with respect 
to a model coordinate frame � . c and R are the global translation and rotation of the model. m = (u, v,w) are 
the material coordinates of the model, defined on a domain � , which represent each point on the model in its 
undeformed state.

The reference shape s is defined as:

Here, e is a geometric primitive; such as an ellipsoid, that represents the model shape parametrically in m 
and parameterized by the variables αi with i = 0, · · · , k and is subject to the global deformation, ξ which 
depends on the parameters βj with j = 0, · · · , l . ξ can be a composite function of several deformations, i.e. 
ξ(e;β) = ξn(· · · ξ2(ξ1(e;β))) . Let β1:l = [β1,β2, · · · ,βl] , then the vector of deformation parameters are defined 
as:

(2)

b̄t =
∫

p(xt , xt−1|z1:t−1)dxt−1

=
∫

p(xt |xt−1, z1:t−1)p(xt−1|z1:t−1)dxt−1

=
∫

p(xt |xt−1)bt−1dxt−1.

(3)bt = ηp(zt |xt)
∫

p(xt |xt−1)bt−1dxt−1.

(4)r(m) = c + Rs(m),

(5)s = ξ(e(m;α0,α1, · · · ,αk);β0,β1, · · · ,βl) = ξ(e;β).
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Along with the rigid motion parameters, δr , which describes the global rotation and translation, the complete 
motion of the model is represented by following vector:

Rest of this section describes application of this framework to the biventricular cardiac modeling. The 
biventricular deformable model of the heart consists of LV endocardium and epicadium, and only RV 
endocardium. The reference shape s is a blended model and composed of several primitive parts, which are 
combined by the use of a blending function. Portions of component primitives are cut out and the selected 
portions are joined together to build the whole model.

The prolate spheroid is chosen as the component primitive:

where ρ and σ are respectively the fixed focal radius and the constant radius of the prolate sphere that define its 
size. Thus, they correspond to the variables αi ’s (5) that parameterize the geometric primitive e. The material 
coordinates, m = (u, v,w) , represent the resulting prolate spheroidal coordinate system, with u = latitude and 
v = longitude . w is the number of primitives, where w = 1 is the LV epicardium, w = 2 is the LV endocardium, 
and w = 3 is the RV endocardium, respectively. The material coordinate domain � is defined as u ∈

[

−π
2
, π
6

]

 
from apex to the base of the ventricles and v ∈ [−π ,π).

The shapes of LV endocardium, eLV (u, v, 1) , and epicardium, eLV (u, v, 2) , are defined by the prolate sphreoid 
primitive in (8) directly with:

where � = 1 describing the LV epicardium in (8) and � = 0 describing the LV endocardium.
The RV endocardium is defined by a blended shape:

where sa is the arc length ratio of the septum with 0 < sa < 1 and sr is the angle between the end of the septum 
and the x-axis on the xy-plane with 0 < sr < π (Fig. 5).

The resulting blended biventricular shape model eB is:

Given the shape model, the ventricular deformations are defined by a set of volume preserving deformations 
(A volume preserving deformation conserves the volume of the object after the deformation. The mathematical 
description of the volume preserving deformations is provided in the Supplementary Material.)70,82,83. The 
parameters that describe these deformations are given in Table 8. These deformations are expressed by a set of 
functions; fi ’s for LV with i = 1, · · · , 7 and hi ’s for RV with i = 1, · · · , 8 . They are applied sequentially to the 
geometric primitive to generate the reference shape s in (5). They describe how a point P is mapped from its 
undeformed reference position p0 in the material domain � to its current deformed position pr in the model 
coordinate frame �.

(6)δs = [β1:l]
T .

(7)δ = [δr , δs]
T .

(8)e(m) =
(

e1
e2
e3

)

=
(

ρ sinh σ cos u cos v
ρ sinh σ cos u sin v
ρ cosh σ sin u

)

,

(9)eLV =





eepi1�+ eendo1(1− �)

eepi2�+ eendo2(1− �)

eepi3�+ eendo3(1− �)



 ,

(10)eRV (u, v, 3) =
{

e(u, sav + sr , 3) , if 0 ≤ v < π

e(u,−sav + sr , 3), if − π ≤ v < 0
,

(11)eB(m) =
{

eLV (m) if w = 1, 2

eRV (m) if w = 3
.

Figure 4.  Visualizes the deformable model framework; mapping from the material coordinate domain to the 
deformable model.
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The nonrigid deformations are followed by a set of functions Gj ’s with i = j, · · · , 4 , that describe the rigid body 
motion of the model with respect to an inertial world coordinate frame � . They map the deformed position of the 
point pr ∈ R

3 from its model coordinate frame � to the position ps ∈ R
3 in the inertial world coordinate frame �.

When describing the nonrigid motion of the cardiac surface via a set of deformations, the sequence of applying 
deformations is important. In this regard, the monotonically increasing numerical subscripts; i.e.  i = 1 · · · , n , 
in the following equations refer to the intermediate position of the point ri ∈ R

3 after the deformation function 
fi−1 is applied.

Let pL0 =
(

pLx , pLy , pLz

)T
 be a point on eLV ; the geometric primitive of LV. The subscripts L and 0 respectively 

state that point is located on the LV surface and it belongs to the initially undeformed reference position. After 
applying the function f0 , the point pL0 is mapped to a new one r1.

It is desired that all the points on the surface of the prolate spheroid compress (or expand) uniformly. Yet, 
the points in the model can have different spherical radii and as a result nonuniform compression will occur in 
general. By converting the model to a more spherical shape, a uniform radial compression is obtained. In this 
regard, an initial transformation f0 is applied to map a prolate spheroidal primitive into a more spherical one 
before applying the radially dependent compression deformation f1:

where the constant ςL = cosh σ
sinh σ

 is a shape adjusting parameter for converting prolate spheroid primitive to a 
more spherical one. ςL is given via calculating respective values for endocardium and epicardium, and then 
taking the  average38.

The first mode of deformation f1 is the radially dependent compression. It describes the change in LV chamber 
volume from the initial reference state by parameter k1:

(12)r1 = f0(pL0) =
(

ς
1
3
L pLx , ς

1
3
L pLy , ς

−2
3

L pLz

)T
,

Figure 5.  The planar shape of the RV relative to the LV for various septum aspect ratio sa and septum rotation 
sr values.

Table 8.  Description of the parameterized deformations for left and right ventricles.

Ventricles Deformation (function) Parameter

LV

Radially dependent compression ( f1) k1

Twisting along long axis ( f2) k2 = sr

Ellipticallization in long axis planes ( f3) k3

Ellipticallization in short axis planes ( f3) k4

Shear in x direction ( f4) k5

Shear in y direction ( f5) k6

Elongation in z direction ( f6) k7,k8

RV

Radially dependent compression ( h1) l1

Twisting along long axis ( h2) k2 = sr

Ellipticallization in long axis planes ( h3) l2

Ellipticallization in short axis planes ( h3) l3

Shear in x direction ( h4) l4,l5
Shear in y direction ( h5) l6,l7
Elongation in x direction ( h6) l8,l9
Elongation in z direction ( h7) l10,l11
Septum aspect ratio sa
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with,

where the VwL is the wall volume of the model and |r1| =
√

r21x + r21y + r21z .
The second deformation mode f2 is the twisting motion of the ventricles and parameterized by k2 . Following 

the discussion in  “Introduction” section, the twisting motion of ventricles is captured by the septum rotation 
parameter k2 = sr:

where,

The next deformation mode f3 determines if the shape of short-axis and long-axis cross-sections of the LV 
becomes more elliptical or spherical. The short-axis and long-axis ellipticallizations are parametrized respectively 
by k3 and k4:

The function f3 also reverses the effect of f0 ; mapping the spherical shape into a prolate spheroidal one.
The set of deformations f4 and f5 , parameterized respectively by k5 and k6 , are the shears in the short-axis 

plane. They represent the shears respectively in the x and y coordinate planes:

The final nonrigid deformation mode f6 represents the elongation of the model in the z coordinate plane and 
parameterized by k7 and k8 . The elongation deformation is defined by viewing the three dimensional space as 
an infinite cascade of parallel planes. Then, each of these planes is translated along the normal direction instead 
of orthogonal to it. As the material elements that inhabit these planes are contracted or stretched in the normal 
direction, inverse operations must be performed in every one of the planes. In other words, if an element is 
stretched in one direction, then it must be contracted in an orthogonal direction to locally conserve  volume83. 
In this case, it stretches the model in the z direction and compresses it in the x and y directions:

where,

and g ′(·) is the derivative of g(·).
After applying the sequence of deformations fi’s, the point on the LV surface is mapped to its deformed 

configuration r7 in the model coordinate frame � from its undeformed reference position pL0 in the material 
domain �.

The rigid body motion of the model with respect to an inertial world coordinate frame � is expressed by the 
set of functions Gj ’s with j ∈ 1 · · · , 4 . They map the position of the point from its model frame � to the inertial 
frame �:

where rL ∈ R
3 is the current deformed position of the point with respect to the inertial frame � and fR is a 

composite function representing the rigid body motion, where the functions Gj ’s are applied sequentially:

(13)
r2 = f1(r1)

=
(

εLr0x , εLr0y , εLr0z
)T

,

(14)εL = 3

√

1+ 3k1VwL

4π |r1|3
,

(15)

r3 = f2(r2)

=







cos(
ςLk2r2z
|r2| )r2x − sin(

ςLk2r2z
|r2| )r2y

sin(
ςLk2r2z
|r2| )r2x + cos(

ςLk2r2z
|rw | )r2y

r2z






,

(16)|r2| =
√

r22x + r22y + r22z .

(17)r4 = f3(r3) =









ς
−1
3

L ek4−(
k3
2
)r3x

ς
−1
3

L e−k4−(
k3
2
)r3y

ς
2
3
L e

k3 r3z









.

(18)r5 = f4(r4) =
(

r4x + k5r
2
4z
, r4y , r4z

)T
.

(19)r6 = f5(r5) =
(

r5x , r5y + k6r
2
5z
, r5z

)T
.

(20)r7 = f6(r6) =
(

r6x√
g ′(r6z )

,
r6y√
g ′(r6z )

, g(r6z )
)T

,

(21)g(r6z ) = k7r
2
6z
+ k8r6z ,

(22)rL = fR(r7) =
(

rLx , rLy , rLz

)T
,
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Here, G1 conveys the rotation about x axis by parameter g1:

G2 expresses the rotation about y axis by parameter g2:

G3 expresses the rotation about z axis by parameter g3:

Finally, G4 expresses the translations in x, y, and z axes and parameterized by g4 , g5 , and g6:

where as in (22), rL is the current deformed position of the point on LV surface with respect to the inertial frame 
�.

Applying the deformable framework to the points on the RV surface follows the same approach.
Let pR0 = [pRx , pRy , pRz ]T ∈ R

3 be a point on eRV  ; the geometric primitive of RV. The subscripts R and 0 
respectively state that point is located on the RV surface and it belongs to the initially undeformed reference 
position.

The deformations applied sequentially to map the initially undeformed position of the point in the material 
domain � to the current position in the model frame � . The monotonically increasing numerical subscripts; 
i.e.  i = 1 · · · , n , in the following equations refer to the intermediate position of the point qi ∈ R

3 after the hi−1 
is applied. After applying the initial function h0 , the point pR0 is mapped to a new one q1.

Likewise in the LV model, an initial transformation h0 is applied to RV model to map a prolate spheroidal 
primitive into a more spherical one before applying the radially dependent compression deformation h1 so that 
a uniform radial compression is obtained:

where the constant ςR is a shape adjusting parameter.
The first mode of deformation h1 is the radially dependent compression parameterized by l1 . It describes the 

change in RV chamber volume from the initial reference state:

with,

where VR is the volume of the model and |q1| =
√

q21x + q21y + q21z .
The second deformation mode h2 is the twisting motion of the ventricles. Following “Introduction” section, 

assuming ventricles have similar twisting patterns and letting k2 = sr:

where,

The next deformation mode h3 determines the short-axis and long-axis ellipticallizations of the RV and are 
respectively parametrized by l2 and l3:

(23)fR(r7) = G4(G3(G2(G1(r7)))).

(24)r8 = G1(r7) =





r7x
cos (g1)r7y − sin (g1)r7z
sin (g1)r7y + cos (g1)r7z



 .

(25)r9 = G2(r8) =





cos (g2)r8x + sin (g2)r8z
r8y

− sin (g2)r8x + cos (g2)r8z



 .

(26)r10 = G2(r9) =





cos (g3)r9x − sin (g3)r9y
sin (g3)r9x + cos (g3)r9y

r9z



 .

(27)rL = G4(r10) =
(

r10x + g4, r10y + g5, r10z + g6
)T

,

(28)q1 = h0(pR0) =
(

ς
1
3
R pRx , ς

1
3
R pRy , ς

−2
3

R pRz

)T
,

(29)q2 = h1(q1) =
(

εRq1x , εRq1y , εRq1z
)T

,

(30)εR = 3

√

1+ 3l1VR

4π |q1|3
.

(31)

q3 = h2(q2)

=





cos(
ςRsrq2z
|q2| )q2x − sin(

ςRsrq2z
|q2| )q2y

sin(
ςRsrq2z
|q2| )q2x + cos(

ςRsrq2z
|q2| )q2y

q2z



 ,

(32)|q2| =
√

q22x + q22y + q22z .
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The function h3 also reverses the effect of h0 ; mapping the spherical shape into a prolate spheroidal one.
The set of deformations h4 and h5 represent the shears respectively in the x and y coordinate planes. The 

function h4 is parameterized by l4 and l5 and the function h5 is parameterized by l6 and l7:

The final nonrigid deformation modes h6 and h7 represent the elongations of the model respectively in the x 
and z coordinate planes. The function h6 is parameterized by l8 and l9 . It stretches the model in the x direction 
and compresses it in the y and z directions. The function h7 is parameterized by l10 and l11 . It stretches the model 
in the z direction and compresses it in the x and y directions:

where,

where,

After the sequence of deformations hi ’s are applied, the point on the RV surface is mapped to its deformed 
configuration q8 in the model coordinate frame � from its undeformed reference position pR0 in the material 
domain �.

Likewise in the LV model, the rigid body motion of the model with respect to an inertial world coordinate 
frame � is expressed by the set of functions Gj ’s with j ∈ 1 · · · , 4 . They map the position of the point from its 
model coordinate frame � to the inertial frame �:

where rR ∈ R
3 is the current deformed position of the point on RV surface with respect to the inertial frame � 

and fR is the composite function representing the rigid body motion, given through (23) to (27).
Biventricular deformations are then described by the following 20-dimensional vector:

where sa and k2 = sr are respectively the septum aspect ratio and septum rotation parameters from (10).
Rigid motion is described with the six parameters defined in (23), δr =

[

g1:6
]T . As a result, the dynamic 

system state xt is a 26-dimensional vector:

where the subscript t denoting the current time step is omitted on the right hand side of (42).

Cardiac surface tracking. There are two key steps in the particle filter algorithm; the motion update step 
and the measurement update step.

The motion update given in (2) step propagates the belief from the previous time step t − 1 based on the 
dynamic system model p(xt |xt−1) and performs the prediction. Dynamic system model specifies how the current 
system state xt evolves from the previous state xt−1 . As this dynamic system is stochastic, the process that models 
the state’s evolution is described by a probability distribution; p(xt |xt−1).

The measurement update given in (3) incorporates the observed data based on the measurement model 
p(zt |xt) , performs the correction, and computes the posterior belief distribution. The measurement model 
specifies how the measurement zt is generated from the state xt . As the dynamic system is stochastic, the process 

(33)q4 = h3(q3) =









ς
−1
3

R el3−(
l2
2
)q3x

ς
−1
3

R e−l3−(
l2
2
)q3y

ς
2
3
R e

l2q3z









.

(34)q5 = h4(q4) =





q4x + l4q
2
4y
+ l5q

2
4z

q4y
q4z



 .

(35)q6 = h5(q5) =





q5x
q5y + l6q

2
5x

+ l7q
2
5z

q5z



 .

(36)q7 = h6(q6) =
(

g(q6x ),
q6y√
g ′(q6x )

,
q6z√
g ′(q6x )

)T
,

(37)g(q6x ) = l8q
2
6x

+ l9q6x .

(38)q8 = h7(q7) =
(

q7x√
g ′(q7z )

,
q7y√
g ′(q7z )

, g(q7z )
)T

,

(39)g(q7z ) = l10q
2
7z
+ l11q7z .

(40)rR = fR(q7) =
(

rRx , rRy , rRz

)T
,

(41)δs = [k1:8, l1:11, sa]
T ,

(42)xt =
[

k1:8, l1:11, sa, g1:6
]T
,
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that models this generation is a probability distribution; p(zt |xt) . The next two sections describe these two steps 
in detail.

Motion update. Cardiac surface motion has complex dynamics and shows high variability, making it challeng-
ing to describe with an exact motion model.  In54 cardiac dynamics are assumed to be generated by a vector-
autoregressive (VAR) process, which is adapted in this work.

At each time step t, given the incremental state update of previous time step; δxt−1 = xt−1 − xt−2 , and a 
vector of past N increments; �xNt−2

= [δxTt−2, δx
T
t−3, · · · , δxTt−(N+1)]T , a recursive least squared (RLS) based 

adaptive filter is used to estimate weights of the underlying VAR model:

where the weight matrix Wt−1 is estimated such that the square of the error between the two sides of (43) is 
minimized. Once the weights are estimated, the vector of past N state increments is updated with the latest 
increment; �xNt−1

= [δxTt−1, δx
T
t−2, · · · , δxTt−N ]T . The estimated weights and the updated state increment vector 

are used to predict the current state update δx̂t ( δx̂ denotes the predicted state increment, δx is the actual 
increment calculated once the state is estimated.):

Then, motion model is given by:

where νt is the Gaussian process noise representing the model uncertainties with covariance �v ; νt ∼ N(0,�ν) , 
and x̂t is the state estimate before incorporating measurement. A more thorough treatment of the state estimation 
based on RLS adaptive filters is given  in54.

Measurement update. In this study measurements are the 2D segmented binary images, which are generated 
from the delineated boundaries of the ventricles. The delineated boundaries of the ventricles are represented 
as the zero-level  set32 of the intersection of the cardiac surface and the image slice plane. Rest of this section 
explains this measurement model, which describes how a measurement is generated given the system state.

For a system state xt , let the set of points on the cardiac surface (4) in R3 represented by γ =
[

γx , γy , γz
]

 and 
let the arbitrarily oriented image slice plane be expressed by the general plane equation in R3:

The signed distances of the surface points to the given image slice plane are calculated as:

The zero-set of the signed distances gives the points on the surface, which represent the boundaries of the 
ventricles:

The 2D binary mask generated via the boundaries Ŵ is the predicted measurement ẑt ; giving the measurement 
model:

where the measurement function ζ represents the process of generating the predicted image ẑt from the state xt 
and ωt is the Gaussian measurement noise.

Figure 6 shows the deformable model and image slice plane intersection. Figure 7a shows the real cardiac 
MRI 2D image slice. Figure 7b shows the corresponding segmented binary measurement zt . Figure 7c shows 
the predicted binary image ẑt , generated from the contours obtained via the intersection of deformable model 
and image slice plane.

The measurement likelihood between the given segmented image and predicted image is calculated via 
normalized cross-correlation (NCCORR)84:

The complete deformable cardiac surface tracking algorithm is given in Algorithm 2. �XNt−2
 and �XNt−1

 are 
the set of past N increments for the whole particle set respectively at times steps t − 2 and t − 1.

(43)
δxt−1 = Wt−1�xNt−2

= Wt−1[δxTt−2, δx
T
t−3, · · · , δxTt−(N+1)]T ,

(44)δx̂t = Wt−1�xNt−1
.

(45)x̂t = xt−1 + δx̂t + νt ,

(46)apx + bpy + cpz = dp

(47)ϕ(γx , γy , γy) = apγx + bpγy + cpγz − dp

(48)Ŵ : {(γx , γy , γy) | ϕ(γx , γy , γy) = 0}.

(49)
zt = ζ(xt ,ωt)

= ẑt + ωt ,

(50)κ =
∑

x,y(z(x, y)− z̄u,v)(ẑ(x − u, y − u)− ẑ)
√

∑

x,y(z(x, y)− z̄u,v)2
∑

x,y(ẑ(x − u, y − u)− ¯̂z)2
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Figure 6.  Shows the intersection of the biventricular deformable model and MRI slice plane.

Figure 7.  (a) The real cardiac MRI 2D image slice. (b) The segmented binary slice measurement zt . (c) The 
predicted binary measurement ẑt , generated from the contours obtained via the intersection of deformable 
model and image slice plane.
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Experimental methods. The proposed algorithm is implemented in  MATLAB® with offline analysis. The 
tracking step for a single particle takes approximately 0.12 seconds on an  Intel® 3.40GHz quad-core CPU with 
16GB RAM under Linux operating system. For both the simulations and the experiments, the presented results 
are averaged across 5 Monte Carlo trials.

The study is not exempt from Institutional Review Board (IRB) approval. The approving institution is the 
University Hospitals Cleveland Medical Center (UHCMC) Institutional Review Board. The date of approval is 
02/01/2018. The UHCMC IRB protocol number is 08-02-43 and all experiments and methods were performed 
in accordance with the relevant guidelines and regulations of this protocol. Informed consent was obtained from 
all subjects involved in the study.

Initialization. For both the numerical phantom and the real cardiac MR datasets, the model is initialized 
at the first frame of the cardiac cycle via Levenberg-Marquardt nonlinear least-squares optimization method 
(Fig. 8a)85. Besides the initial deformation parameters, this step also provides the focal radius ρ and constant 
radius σ parameters (8) of the plorate spheroid primitive.

For the POIs selected via 16-point LV and 8-point RV models, their material coordinates are determined at 
the initialization step. Then, the corresponding points in the world coordinate frame for these material points 
are tracked over the cardiac cycle. Figure 8b shows the locations of initial points on the model and data for a 
mid-ventricular slice.

Numerical phantom. The numerical phantom allows to compare the performance of the proposed method 
with the precise ground truth. Quasi-periodic nature of the cardiac  motion54 is utilized to construct the numeri-
cal phantom. Each parameter in Table 8 is initially generated from a sinusoidal signal for the duration of two 
periods and then added with the white Gaussian noise. The fundamental frequency and the sampling time of 
the signals are respectively chosen as fh = 2 Hz and Ts = 20 ms to mimic cardiac heart  rate54 and real-time MR 
multi-slice image  acquisition86. The signals for LV parameters are adapted from the cardiac simulator presented 
 in82. The RV parameters are assumed to vary similarly with LV. The parameter and septum aspect ratio (10) 
signals are given in Table 9.

It is assumed that the numerical phantom is initially relaxed and undeformed, representing end-diastole. It 
starts to deform and reaches its maximum deformation at half signal period representing end-systole, then relaxes 
gradually to conclude a single signal period. Only nonrigid motion is considered for the numerical phantom. 
As the method can be generalized by adding rotation and translation parameters, tracking of the rigid motion is 
trivial. Image size is chosen to be 200x280 pixels with an in-plane resolution of 1.5x1.5 mm2 and a slice thickness 
of 2 mm. Figure 9 shows respectively the undeformed and the deformed instances for a mid-ventricular slice.

For the numerical phantom, 10th order one-step estimators were used in the motion update step (45). The 
particle filter was initialized with 1000 particles per time step. Separate trials were performed for the basal, mid-
cavity, and apical sections slice planes (Fig. 1a). In each trial once the initial 2D image slice plane was selected 
at the first time step, the same image slice was used in the remaining time steps.

Real cardiac MRI data. The experimental datasets used in this study are 2D multi-slice cardiac cine MRI 
sequences collected following standard CMR  protocols87, where each dataset showing a single cardiac cycle 
divided into 25 cardiac phases. For all the datasets, the first time frame corresponds to diastole. Thus, each data-
set starts at diastole, then continues to systole, and finally comes back to diastole. The in-plane resolution of each 
dataset is 1.77 × 1.77 mm2 with slice thickness of 8 mm and no gap between slices. The information for each 

Figure 8.  (a) Shows the initial fit of biventricular model to data via nonlinear least squares optimization. (b) 
Shows the locations of the initial points on the model and the data selected based on 16-point LV and 8-point 
RV model for a mid-ventricular slice.
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dataset about the number of slices covering from the base to the apex of the ventricles, the slice locations, and 
the image size of each slice is given in Table 10.

The analysis of the cine MRI datasets were done offline via using the freely available software, Segment version 
3.3  R9405b88. The LV and RV segmentations were performed by using the automatic segmentation algorithm in 
the  software89. The ground truth points were extracted from the data via the feature tracking algorithm in the 
strain analysis module of the  software90. Figure 10 shows the images and corresponding segmentations obtained 
via the Segment software for the basal, mid-ventricular, and apical slices.

For the real MRI datasets, 5th order one-step estimators were used in the motion update step. The particle 
filter was initialized with 1000 particles per time step. A single MRI slice was used per time step for the tracking 
algorithm.

Two sets of experiments were performed for the real cardiac MRI datasets. The first experiment was same 
as the numerical phantom. Separate trials were performed for the basal, mid-cavity, and apical slice planes. In 
each trial, once the 2D image slice plane was determined at the first time step, the same image was used in the 
remaining time steps.

In the second experiment, the algorithm was evaluated with changing slice planes at each time step; i.e., the 
slice plane was allowed to be different than the one in the previous time step. Once the initial 2D image slice 
plane was selected, it was not necessarily needed to be the same one in the remaining time steps. In a typical 
application, this varying single image slice could be either manually selected from a stack of slices by a clinician 
or automatically by an active sensing  algorithm91. Here, the set of slice planes are selected randomly between the 
basal and mid-ventricular slices (Fig. 1). At each time step, the slice plane variable vp ; indicating which slice to be 
selected from a given stack of slices, is generated randomly from a discrete uniform distribution; vv ∼ U (vb, vm) , 
where vb = 2 is the second basal slice and vm = 7 is the first apical slice.

Data availability
The datasets analysed during the current study are not publicly available due to restrictions in the Institutional 
Review Board approval. External researchers are welcome to contact the corresponding author (E. E. Tuna) for 
any inquiries about the data.

Table 9.  Parameter signals used to construct the numerical phantom. fh = 2 Hz is the fundamental frequency 
and Ts = 20 ms is the sampling time of the signals, where t = nTs with n = [0, 1 · · · , 49] . Corresponding to a 
duration of two periods.

Ventricles Parameter Signal

LV

k1 0.01 sin (2π fht)

k2 = sr
π
12

− π
12

cos (2π fht)

k3 −0.03 sin (2π fht)

k4 0.05 sin (2π fht)

k5 −0.02 sin(2π fht)

k6 0.02 sin(2π fht)

k7,k8 0.01 sin(2π fht)

RV

l1 0.01 sin (2π fht)

l2 −0.03 sin (2π fht)

l3 0.05 sin (2π fht)

l4,l5 −0.02 sin(2π fht)

l6,l7 0.02 sin(2π fht)

l8,l9 0.01 sin(2π fht)

l10,l11 0.01 sin(2π fht)

sa 0.9 + 0.1cos (2π fht)

Figure 9.  Slices from mid-ventricular section of the numerical phantom for (a) undeformed (b) deformed 
instances.
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