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Abstract—In robotic assisted beating heart surgery, the goal
is to develop a robotic system that can actively cancel heart
motion by closely following a point of interest (POI) on the
heart surface, a process called Active Relative Motion Canceling
(ARMC). In order to track and cancel POI motion precisely,
control algorithms require good quality heart motion data. In
this paper, a novel method is described which uses a particle
filter to estimate the three-dimensional location of POI on heart
surface by using measurements obtained from sonomicrometry
along with an accelerometer. The new method employs a
differential probability approach to increase the accuracy of
the particle filter. The performance of the proposed method is
evaluated by simulations.

I. INTRODUCTION

In coronary artery bypass graft (CABG) surgery, surgeons
require to operate on blood vessels that move very rapidly.
This high-bandwidth motion of heart makes it difficult
to effectively operate on these arteries by hand [1]. The
standard practice is to perform CABG surgery by using
heart-lung machine and stopping the heart (on-pump). Off-
pump (without stopping the heart) is preferable over on-
pump CABG surgery because the use of cardio-pulmonary
bypass machine can harm patients by hemolysis and cause
significant complications that might occur during or after
surgery, which includes long-term cognitive loss [2]. On
the other hand, off-pump CABG surgery is not effectively
applicable to the coronary arteries on the side and the back
of the heart, and limited to small number of bypasses due to
limitations of passive stabilizers [3].

Robotic-assisted surgery replaces conventional surgical
tools with robotic instruments, which are under the direct
control of the surgeon through teleoperation. In this system,
the surgeon views the surgical site through a camera mounted
on a robotic arm that follows the heart motion. The robotic
surgical instruments also track the heart motion, canceling
the relative motion between the surgical site and the instru-
ments. By this way, it provides surgeon a stabilized view of
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the surgical site and therefore surgeon operates on the heart
as if the heart is stationary [4].

For proper operation of the control algorithms and precise
motion tracking, accurate measurement of the POI motion
by position tracking sensors is required. Earlier studies in
canceling beating heart motion with robotic-assisted tools
used vision based and ultrasound based sensor systems
to measure heart motion. Nakamura et al. [4] used a 4-
DOF master-slave robot along with a high-speed two-camera
computer vision system to track heart motion. Ginhoux et
al. [5] utilized a high-speed 2D visual servoing scheme
to predict heart motion. In another study, Thakor et al.
[6] employed a laser range finder system to measure one-
dimensional motion of the heart. Even though vision-based
systems were preferred in many studies for their excellent
accuracy and update rate, their performance significantly
degraded by noise and occlusions. Although an algorithm
was developed by Ortmaier et al. in [7] to estimate the heart
motion, when the view is occluded, it is only applicable to
brief occlusions. Therefore, it is desirable to use a sensor
system, which is robust to occlusions.

Yuen et al. [8] performed a series of three dimensional
ultrasound sonography-guided motion synchronization ex-
periments to measure the mitral annulus position tracking
accuracy of a robotic motion compensation system. However.
3D ultrasound sonography is only applicable when working
on targets inside the tissue, and cannot be used to measure
motions on the surface of the heart, as it is in CABG surgery.

Sonomicrometry is a promising technology for measuring
POI motion in this application. A sonomicrometer employs
piezoelectric transducers (crystals) and measures the inter-
transducer element distances. Sonomicrometer is very accu-
rate and the major source of error is the transducer geometry.
Cavusoglu et al. [9] used a sonomicrometry system to collect
heart motion data from an adult porcine and showed the
feasibility of a robotic system performing off-pump CABG.
Although it doesn’t have the occlusion shortcoming of a
vision system, sonomicrometer measurements contain noise
from ultrasound echoes. Additionally, sonomicrometer is
more prone to error in calibration between the sensors and
the robotic manipulator coordinate frame.

The primary goal of this study is to accurately estimate
3D POI position on the heart surface. We propose a novel
method, which employs particle filter algorithm as a re-
cursive Bayes estimator to clean the noisy sonomicrometer
measurements and estimate the 3D POI location using these
measurements along with an accelerometer. The presented
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Fig. 1. The proposed scheme: One crystal of the sonomicrometry system
is sutured on the heart, four or more other crystals are mounted on a rigid
base forming a reference coordinate frame. A three-axis solid state micro-
accelerometer is mounted on the target sonomicrometry crystal.

method uses a differential probability approach to increase
the accuracy of the particle filter.

The rest of this paper is organized as follows: The pro-
posed method is explained in Section II. Simulations and
results are given in Section III. Finally, the discussion and
conclusions are presented in Sections IV and Section V
respectively.

II. METHOD

In this study, we propose a method to accurately estimate
3D POI position on heart surface from noisy sonomicrometer
and accelerometer measurements. In the proposed scheme,
one crystal of the sonomicrometry system would be sutured
on the heart (POI location) and four or more other crystals
would be mounted on a rigid base forming a reference co-
ordinate frame. The distances between each base crystal and
the moving crystal would be measured. These measurements
would be used to estimate the 3D position information of
the crystal attached next to the POI relative to the reference
frame [10]. A three-axis solid state micro-accelerometer
would be mounted on the sonomicrometery crystal, which
is sutured at the POI (target crystal).

The sonomicrometric sensor is susceptible to a peculiar
form of error caused by the obstruction of ultrasound trans-
mission paths and echo effects. These effects result in a non-
Gaussian noise component to appear as instantaneous jumps
in the 3D coordinates calculated using the sonomicrometer
system. In the proposed scheme, the inertial sensor would
be employed in combination with the sonomicrometer to
eliminate these effects. Fig. 1 depicts the configuration of
the various components and associated coordinate frame
involved.

The particle filter algorithm is employed to estimate the
three-dimensional POI position coordinates from the noisy

sonomicrometer and accelerometer measurements. Finally,
a differential probability approach is utilized to increase
the accuracy of the particle filter. In this section, these
four elements, which comprise the developed method are
explained.

A. Sonomicrometer
A sonomicrometer (Sonometrics Inc., Ontario, Canada)

accurately measures the distances within the moving soft
tissue via ultrasound signals by a set of small piezoelectric
crystals. For this study, these crystals are attached to the
heart as described above while it is still beating and they
are used to transmit and receive short pulses of ultrasound
signal. The distance between the transmitting and receiving
crystals are computed by measuring the time of flight of the
sound wave. The 3D configuration of all the crystals can be
calculated from these distance data [11].

B. Accelerometer
In the proposed scheme, the estimation of POI location

from sonomicrometer measurements can be improved by
using an accelerometer, which is mounted on the target
crystal and measures the acceleration of the target crystal.

The output of the accelerometer is the summation of the
true acceleration of target crystal and gravitational accelera-
tion since gravity of Earth also acts on the sensing axis of the
accelerometer. This leads to a significant challenge, as the
orientation of the accelerometer is not known and it doesn’t
change during the motion. The effect of the gravitational
component on the accelerometer output at time t is given
by:

Rwa

 sx,t
sy,t
sz,t

 = Rws

 ax,t
ay,t
az,t

+

 0
0
−g

 , (1)

where g is the gravitational acceleration, and at =
[ax,t, ay,t, az,t]

T and st = [sx,t, sy,t, sz,t]
T are respectively

the true acceleration of target crystal and accelerometer
output. Note that acceleration “at” of the crystal is expressed
in the sonomicrometer frame (S), and the gravity vector
[0, 0,−g]T is in the world coordinate frame (W ), and the
acceleration sensor output “st” is in the body frame (A).
Rws is the rotation matrix from sonomicrometer to world
coordinates and is assumed to be known and constant.
Finally, Rwa is the rotation matrix from accelerometer to
world coordinate frame, which is unknown and time varying.

By rearranging (1), the true acceleration of the target
crystal can be represented as follows: ax,t

ay,t
az,t

 = Rsw

 rx,t
ry,t
rz,t

−
 0

0
−g

 , (2)

where rt = [rx,t, ry,t, rz,t]
T is the output of accelerometer

in world frame, as given by: rx,t
ry,t
rz,t

 = Rwa

 sx,t
sy,t
sz,t

 . (3)
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The right hand side (RHS) of (3) can be represented by
multiplication of a unit vector and a scalar:

Rwa

 sx,t
sy,t
sz,t

 = |S|

 ux,t
uy,t

−
√

1− u2x,t − u2y,t

 , (4)

|S| =
√
s2x,t + s2y,t + s2z,t (5)

The new representation in (4) and (5) decreases the computa-
tional load of computing at by avoiding the matrix multipli-
cation of Rwa and Rsw. As the gravitational acceleration
would be much larger than acceleration of the POI, the
alternate sign version of the square root in (4) would not
cause any ambiguity.

Since heart is beating, the POI, the crystal attached to
POI, and the accelerometer move with time. This causes
Rwa to be time-varying which prevents the straightforward
computation of at by using Equation 2. Therefore, in order to
utilize acceleration information in estimating POI location,
Rwa, or more specifically, rt = Rwast needs to be esti-
mated. In order to improve the robustness of the estimation,
instead of estimation the orientation of the accelerometer,
Rwa, here we will instead estimate the unit direction vector
ut = [ux,t, uy,t,−

√
1− u2x,t − u2y,t]T .

C. Particle Filter

The idea of estimating POI location on the heart surface
from sonomicrometer and accelerometer measurements is the
core of this study. By using state estimation, the POI location
(state of the system) can be recovered from gathered sensor
data. However as mentioned in Section II, sonomicrometer
measurements are corrupted by noise. So for precise POI
position estimation, the noise in the sonomicrometer has to
be characterized and filtered.

One approach is to use a Bayes estimator, which recur-
sively estimates the current state of the system from the
state of the system at the previous time step. Modeling
the sonomicrometer measurement error by a Gaussian noise
distribution is a simple and direct way to model system noise.
Since the underlying dynamics of the system is nonlinear,
Bayes estimator can be easily implemented by an Extended
Kalman Filter (EKF) when the system noise assumed to be
Gaussian.

Although the Gaussian noise distribution will be sufficient
enough to model system noise for regular heart motion,
a more detailed noise model is needed to capture the un-
certainties when the heart statistics are likely to change as
in heart rate variations and arrhythmias. Particle filter is a
Monte-Carlo implementation of iterative Bayes’ filter used
for state estimation of non-Gaussian non-linear state space
models [12]. A major advantage of a particle filter over an
EKF is that a particle filter can incorporate non-Gaussian
noise models. Additionally, if the posterior distribution of the
state is represented by sufficiently large number of particles,

particle filter approaches to the optimal Bayesian estimate,
which makes it more accurate than EKF.

In this study, two different process models will be consid-
ered for the cases with and without accelerometer measure-
ments.

When there is no accelerometer measurement available,
the system dynamics are then modeled as

pt+1 = pt + vt∆ +
1

2
at∆

2 + εp (6)

vt+1 = vt + at∆ + εv (7)
at+1 = at + εa (8)

where pt = (pxt
, pyt , pzt) and vt = (vxt

, vyt , vzt) are,
respectively, the three-dimensional position and velocity of
POI at time t, at is the POI acceleration as defined in (2),
∆ is the time step, and ε(·) are zero mean Gaussian noise
terms. Then the system state at time t is specified by

qt = [pt, vt, at]
T
. (9)

When accelerometer measurements are available, the pro-
cess model changes to

pt+1 = pt + vt∆ +
1

2
at∆

2 + εp (10)

vt+1 = vt + at∆ + εv (11)
ux,t+1 = ux,t + εux (12)
uy,t+1 = uy,t + εuy (13)

where at is no longer a state, but, an input to the system as
calculated by (2)-(5). Then, the states of the system become

qt = [pt, vt, ux,t, uy,t]
T
, (14)

where, (ux,t, uy,t) are from Equation 4.

D. Measurement Model: Differential Probability Method

At this point, the only measurement that can be used
in measurement updates of the Bayes filter is the position
measurement obtained from the sonomicrometer1. Assuming
zero mean Gaussian noise in the sonomicrometer measure-
ments, the probability density function of the measurement
model would be of the form:

P (pPOI,t|pparticle,t) = Pp,t =

1√
2πσ2

p

exp

(
−1

2

(
pPOI,t − pparticle,t

σp

)2
)

(15)

where, pPOI,t is the measured position of the POI (as
provided by sonomicrometer), pparticle,t is the position of
the particle, and σ2

p is the covariance of the Gaussian.
Recall that, the equation of motion given by the process

model for the POI position is of the form:

pt+1 = pt + vt∆ +
1

2
at∆

2. (16)

1Recall that, acceleration measurement was used to modify the input of
the system, so, it cannot be used in the measurement update.
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For small time steps ∆, the changes in the estimated posi-
tion of the POI is not very sensitive to the values of the
velocity and acceleration estimates, which are multiplied
by ∆ and ∆2, respectively. As a result, the probability
density function (15), which is used as the weighting function
for measurement updates, is not very sensitive to velocity
and acceleration errors. This exhibits itself as delays in
acceleration and velocity corrections, as the influence of
these errors need to accumulate over multiple time steps,
leading to poor performance.

In order to remedy this problem, we propose the “differ-
ential probability” method, which modifies the probability
density function of the measurement model to be more
sensitive to velocity and acceleration errors, as described
below.

We start by defining the following derived velocity and
acceleration variables:

vPOI,t =
pPOI,t − pbelief,t−1

∆
, (17)

aPOI,t =
vPOI,t − vbelief,t−1

∆
, (18)

where pbelief,t−1 and vbelief,t−1 are respectively the expected
values of the position and velocity beliefs at time t − 1, as
given by the particle distributions. It is then possible to define
the new probability density functions over these new derived
variables as:

Pv,t =
1√
2πσ2

v

exp

(
−1

2

(
vPOI,t − vparticle,t

σv

)2
)

(19)

Pa,t =
1√
2πσ2

a

exp

(
−1

2

(
aPOI,t − aparticle,t

σa

)2
)
.(20)

Consequently, alternate forms for the probability density
function for the measurement model P (pPOI,t|pparticle,t) can
be defined as:

Pp,tPv,t, (21)
Pp,tPa,t, (22)
Pp,tPv,tPa,t, (23)

in addition to its original form

Pp,t. (24)

The advantage of these alternate forms are that they are more
sensitive to errors in velocity and acceleration estimates.

If they are used by themselves, the covariances for Pv,t
and Pa,t would, respectively, be

σ2
v =

(√
σ2
p + σ2

p,belief/∆
)2
, (25)

σ2
a =

(√
σ2
p + σ2

p,belief/∆
2
)2
. (26)

When these probability density functions are used in com-
bination, with Pp,t, and with each other, it is necessary to
perform a correction to the covariance values. Specifically,
when two of the Pp,t, Pv,t and Pa,t are used in combination,
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Fig. 2. Artificial heart motion data generated for simulations superimposed
on raw data collected by sonomicrometer
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Fig. 3. Fourier spectrum of artificial heart motion data. Tall, narrow
peaks indicate that it resembles the quasiperiodic motion of the heart. First
peak at 0.3 Hz corresponds to breathing motion. Peaks at 2 Hz and 4 Hz
correspond respectively to the fundamental component and first harmonic
of the heartbeat motion.

the covariance terms in (15), (19), and (20) would need to
be modified as

σcorrected,(·) =
√

2σ(·) (27)

and when all three of the Pp,t, Pv,t and Pa,t are used in
combination, the covariance terms would need to be modified
as

σcorrected,(·) =
√

3σ(·). (28)

These corrections are required due to the fact that the new
quantities vPOI,t and aPOI,t are not actually independent
from each other or pPOI,t, as they are quantities derived from
pPOI,t.
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TABLE I
VALUES OF THE PARAMETERS USED IN EQUATION 29 GENERATING

ARTIFICIAL HEART MOTION DATA FOR EACH PRINCIPLE AXES.

Parameters

Axis c0 kb1 kh1
kh2

θb1 θh1
θh2

x −10.4 2.2 −1.6 1.5 −π
2

−π
2

−π
3

y −75.3 −3.4 2.4 1.8 π
2

2π
3

7π
9

z 65 3.2 −1.7 2.2 −π π
2

2π
3

III. SIMULATIONS

A. Accuracy

The performance of the proposed method is evaluated by
simulations. Two distinct set of simulations are performed.
First set employs only sonomicrometer measurements in
estimating POI position whereas the second set includes
measurements gathered by accelerometer as well as so-
nomicrometer. In each set, accuracy of the estimations of
four different methods are tested. Each method employs
respectively Pp,t, Pp,tPv,t, Pp,tPa,t, Pp,tPv,tPa,t as its error
distribution model.

16 seconds long artificial data was generated for the
simulations, in a way to resemble the actual heart motion
data collected in in vivo studies [10], [13]. Fig.2 shows the
generated artificial data superimposed on raw data and Fig.
3 shows the Fourier analysis the artificial data.

The motion of the POI on the heart is primarily the
superposition of two effects: motion due to the heart beating
and motion due to breathing. Each of these signals closely
resemble periodic signals.

In this manner, artificial heart motion is generated by
using the principal component of breathing motion and the
principle component and first harmonic of the heartbeat
motion with a constant offset. This approximation for a
single axis is given as:

mt = c0 + kb1 sin(wb1t− θb1) + kh1 sin(wh1t− θh1)

+ kh2 sin(wh2t− θh2), (29)

where wb1 = 2πfb1 , wh1
= 2πfh1

, and wh2
= 2πfh2

.
fb1 = 0.3 Hz is the fundamental frequency of breathing
motion, fh1 = 1.95 Hz and fh2 = 3.90 Hz are respectively
frequencies of the fundamental component and first harmonic
of the heartbeat motion. Table I shows the parameters
c0, kb1 , kh1

, kh2
, θb1 , θh1

, θh2
used to generate motion in each

x/y/z axes.
The generated data is corrupted by white Gaussian noise

with σs = 0.315, approximately equal to the absolute accu-
racy of the Sonomicrometry system, which is 250 µm ≈ 1/4
wavelength of the ultrasound [14].

For the set of simulations, in which accelerometer was
employed, the simulated accelerometer output was computed
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Fig. 4. Position and velocity estimates for x and z axes. Estimations with
acceleration sensor employs PptPvtPat error model. Estimations without
acceleration sensor corresponds to the Reference method which uses only
Ppt error model. Actual motion and velocity data are computed respectively
by Equation 29 and taking its first derivative.
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TABLE II
THE ESTIMATION ERRORS AND COMPUTATION TIMES (IN PARENTHESES)

FOR EACH OF THE ALGORITHMS. THE ERROR VALUES ARE REPORTED
AS A PERCENTAGE OF THE REFERENCE VALUE, NAMELY, THE CASE

WITHOUT ANY ACCELERATION SENSOR AND THE ERROR PROBABILITY
MODEL WITH Pp,t ONLY.

RMS Error (as % reference) Acceleration Sensor
(Estimation Time for Used Not Used

10 sec of data (in sec)) 3D x/y/z 3D x/y/z

Error
distribution
model used

Pp,tPv,tPa,t
72.8% 83% 85.2% 87%

(173s) 80% (158s) 83%
55% 86%

Pp,tPv,t
74.2% 84% 80.3% 81%

(163s) 81% (154s) 78%
55% 81%

Pp,tPa,t
74.2% 84% 85.6% 87%

(168s) 81% (152s) 84%
57% 86%

Pp,t 77.5% 88% - -

(155s) 85% (147s) -
59% -

as
st = RTwa

(
Rwsat +

[
0 0 −g

]T)
(30)

and then corrupting it by a white noise with σa = 85. Here,
at was computed by taking the second derivative of (29).
The orientation of the accelerometer Rwa was simulated to
change during the trajectory as Rwa = Rx(θx,t)Ry(θy,t),
with

θx,t = π
180 (10 + 10 sin π

180
t

250 )

θy,t = π
180 (10 + 5 sin π

180
t

250 ).
(31)

The σa value was chosen to mimic the noise characteristics
of the acceleration sensor “MMA7260QT” (Freescale Semi-
conductor, Inc. TX, USA).

The results of the simulation studies are given in Table
II. Simulations were run 10 times for each model and the
average results are reported in the table. 3000 particles were
used in the particle filter. The root-mean-square (RMS) errors
(both for individual x/y/z axes and for the 3 dimensional
error) are calculated from the difference between the gener-
ated artificial motion of the POI and POI positions estimated
by the employed models. The error values are reported as a
percentage of the reference value, i.e., for the case without
any acceleration sensor and the error probability model with
Pp,t only. The estimated position and velocity of POI for
x/z axes are shown in Fig. 4. The result of position show
our method decrease error.

B. Effect of number of particles

In the simulations reported in Section III-A, the number
of particles used in the particle filters was set to 3000.
As the computational complexity of the particle filtering
algorithms depend O(n) in the number of particles used,
analyzing the effect of the number of particles used on the
estimation accuracy is important. In this section, simulations
are performed only for the setup with accelerometer, as this is
the primary focus of the paper. The same artificial motion and
acceleration sensor data is used. As in the previous section

Fig. 5. Variation of the RMS error with the number of particles used in
estimation

four methods, Pp,t, Pp,tPv,t, Pp,tPa,t, Pp,tPv,tPa,t, are
compared. The reported results are average values obtained
from 5 repetitions of the simulations.

Fig. 5 presents how the RMS error varies with the number
of particles used in estimation, and, Table III reports the
execution time of each method. In this table, reference
method corresponds to the case, in which accelerometer
measurements weren’t used and Pp,t was employed as the
error distribution model. Reference method is considered as
baseline while comparing the speed of estimation algorithms.

From Table III, it can be observed that the speed of
differential probability method is slower than other methods.
However, the speed of differential probability method can be
increased by reducing particle number used.

Fig. 5 shows that the method which uses Pp,tPv,tPa,t as
the error distribution model yields the best estimation results,
and exhibits little degradation of performance with as little
as 500 particles. This algorithm reduces the RMS error as
much as 27% when compared with the reference method.

TABLE III
COMPARISON OF EXECUTIONS TIMES OF EACH OF THE METHODS THAT

EMPLOY ACCELEROMETER DATA. THE ALGORITHM WITH THE ERROR
PROBABILITY MODEL Pp,t AND WITHOUT ANY ACCELERATION SENSOR

MEASUREMENTS IS USED AS THE REFERENCE.

Method
Estimation time
for 10s data per
particle (in msec)

Computation
time as a % of
the reference

Reference 4.89 100
Pp,t 5.18 94

Pp,tPv,t 5.41 90
Pp,tPa,t 5.58 88

Pp,tPv,tPa,t 5.78 85
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IV. DISCUSSION

A. Estimation Accuracy

Results presented in Table II indicates that if accelerometer
is employed, accuracy of POI position estimates improves
considerably. This improvement is compounded with the use
of the proposed “differential probability methods,” i.e., by
employing the Pv,t and Pa,t terms in the error distribution
model, with marginal computational cost. Pv,t term in the
model improves the accuracy for both sets of simulations.
However, incorporating Pa,t in the error model doesn’t has
significant effect on the accuracy of estimations as much as
Pv,t when the accelerometer is not used. It should be noted
that, for the simulation set with accelerometer, the accuracy
of the methods, Pp,tPv,t and Pp,tPa,t are equal as the effects
of velocity and acceleration appear to be matched.

One crucial observation is that Pp,tPv,tPa,t method can
still accurately estimate POI position when the number of
particles are reduced to 500 when accelerometer is used.
(See Fig. 5). However, Pp,t method requires at least 3000
particle to decrease RMS estimation error considerably form
the Reference method. Therefore, the proposed method sig-
nificantly improves the efficacy of particle filter.

B. Accuracy of Individual Axes

When the accelerometer is used, accuracy of estimations
in z-axis was higher than x/y axes. This is simply because
of the parametrization used for calculating true acceleration
of target crystal (See Equations 4 and 5). According to the
parametrization in (4), acceleration errors in x/y axes are
respectively εx and εy . The error in z-axis is given by,

εz =
√

1− u2
x,t − u2

y,t −
√

1− (ux,t + εx)2 − (uy,t + εy)2

(32)
If both ux,t and uy,t are smaller than 0.4, then by (32) εz
is always less than εx and εy . Since the acceleration of POI
motion is always less than gravitational acceleration, g, ux,t
and uy,t are never larger than 0.4. Therefore accuracy of the
estimations in z-axis is better than x/y axes which can be
also observed from the results presented in Fig. 4.

C. Computation Time

In the simulations, POI estimations are performed for 10 s
of data. The method Pp,tPv,tPa,t, when used with 500 par-
ticles, yield the best compromise between the computation
time and accuracy. For the specific implementation and the
computer system used, this case resulted in a computation
time of 28.8 s which is approximately 3 times slower than the
real time. The necessary speedup can potentially be achieved
with parallel processing, as particle filtering algorithm can be
trivially parallelized. Even further speedups can potentially
be achieved by a multi-threaded implementation.

V. CONCLUSION

In this study, a novel motion estimation method for heart
motion using sonomicrometry and acceleration sensing is

presented. The proposed algorithm employs particle filters
as a recursive Bayes estimator to clean the noisy sonomi-
crometer measurements and estimate the 3D POI location
on the heart. The proposed method is shown to reduce the
estimation accuracy by 27% in simulation studies, compared
to the case without any acceleration sensing when particle
number is 500.

Future work includes the hardware validation of the pro-
posed scheme. Parallel processing will be also incorporated
to improve the computational performance of the proposed
method.
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