
Analysis of Dynamic Response of an MRI-Guided Magnetically-Actuated
Steerable Catheter System

E. Erdem Tuna, Taoming Liu, Russell C. Jackson, Nate Lombard Poirot, Mac Russell, M. Cenk Çavuşoğlu

Abstract— This paper presents a free-space open-loop dy-
namic response analysis for an MRI-guided magnetically-
actuated steerable intra-vascular catheter system. The catheter
tip is embedded with a set of current carrying micro-coils. The
catheter is directly actuated via the magnetic torques generated
on these coils by the magnetic field of the magnetic resonance
imaging (MRI) scanner. The relationship between the input
current commands and catheter tip deflection angle presents
an inherent nonlinearity in the proposed catheter system. The
system nonlinearity is analyzed by utilizing a pendulum model.
The pendulum model is used to describe the system nonlinearity
and to perform an approximate input-output linearization.
Then, a black-box system identification approach is performed
for frequency response analysis of the linearized dynamics. The
optimal estimated model is reduced by observing the modes
and considering the Nyquist frequency of the camera system
that is used to track the catheter motion. The reduced model
is experimentally validated with 3D open-loop Cartesian free-
space trajectories. This study paves the way for effective and
accurate free-space closed-loop control of the robotic catheter
with real-time feedback from MRI guidance in subsequent
research.

I. INTRODUCTION

Catheter ablation (Fig. 1a) is a widely performed mini-
mally invasive interventional procedure for treatment of atrial
fibrillation [1], [2]. In that procedure, the catheter is guided
by the physician to the left atrium via passing through the
femoral vein, the right atrium and the atrial septal wall. In the
left atrium, the tip is steered to reach the desired area, such as
the ostia of the pulmonary veins, and radio frequency energy
is applied to form barriers to prevent the spread of the irreg-
ular electrical signals. For the last decade, robotic catheters
have emerged as a promising technology for catheter abla-
tion. So far, two robotic catheter systems received U.S. Food
and Drug Administration (FDA) clearances, the Niobe ES
mag- netic navigation system [3] (Stereotaxis, St. Louis, MO,
USA) for the atrial fibrillation ablation, and the Magellan
robotic system [4] (Hansen Medical, Mountain View, CA,
USA) for the advanced endovascular procedures. Using a
robotic catheter system, the physician can remotely steer the
catheter, while seated comfortably in the control room and
be safely protected from radiation.

Magnetic resonance imaging (MRI) is a promising imag-
ing method for cardiac ablation procedures due to its superior
soft tissue visualization with no radiation exposure [6],
[7]. Various MRI-actuated catheters designs were proposed
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(a) (b)
Fig. 1. (a) Illustration of catheter ablation procedure [5]. (b)
Illustration of a proof-of-concept catheter prototype in a magnetic
field, including a set of embedded current-carrying coils [5].

in [8]–[15]. A novel steerable robotic catheter system is
proposed by Liu et al. in [5], [16]. In the proposed design,
the catheter is embedded with a set of current-carrying micro-
coils at the tip. It is directly actuated via the magnetic
torques generated on these coils by the magnetic field of the
magnetic resonance imaging (MRI) scanner. The actuation of
the proposed catheter system is not subject to the mechanical
transmission problems that exist in other actuation methods
(such as tendon-driven [17] and hydraulic [18] actuation),
which place the actuators outside the patient body. This
magnetic actuation method reduces backlash and friction in
the system.

In [19], a Jacobian based inverse kinematics method is
implemented for the design proposed in [5], [16] using the
damped least squares method [20]–[22]. The performance of
the proposed inverse kinematics approach is validated using
a prototype of the robotic catheter by comparing the actual
trajectories of the catheter tip obtained via open-loop control
with the desired trajectories. A camera-based vision system
is used to track the catheter deflections in the experiments.

As a first step to perform free-space closed loop control,
based on the previous work in [5], [16], [19] this paper
presents a free-space open-loop dynamic response analysis
of the proposed MRI-compatible magnetically actuated steer-
able catheter system.

For the proposed catheter system, the actuation currents
and the deflection angle of the catheter are treated re-
spectively as the overall system input-output. The previous
kinematics analysis in [16], exposes a nonlinearity between
the input current commands and the output deflection angle.
A simple pendulum model is used to model this nonlinearity
and to perform an approximate linearization, which yields
linearized dynamics between the deflection angle and the
net actuation torque obtained from the lineaization step. The
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linearized system is then treated as a black-box model and a
linear system identification approach is performed to identify
the dynamic response analysis of the proposed catheter
system, with the net actuation torque and the deflection angle
are treated respectively as the system input-output.

In order to model the system nonlinearity effectively
with a pendulum, only planar motions are employed when
the catheter is aligned with gravity and magnetic field is
orthogonal to the gravitational field. Out-of-plane motions
are not utilized for model identification as they would further
complicate the complex system nonlinearity characterization.
Nevertheless, the estimated model is validated with the out-
of-plane 3D open-loop Cartesian space trajectories. The
system response obtained from these experiments are shown
to be consistent with the system bandwith calculated from
the identification step. This study gives a first insight into
frequency characteristics of the proposed catheter system,
which together with the previous open-loop control work
[19] builds the foundation for accurate free-space closed-
loop control of the robotic catheter with real-time feedback
from MRI guidance in subsequent research.

The related studies regarding dynamic response analysis of
robotic catheters are given in Section II. Dynamic response
analysis of the proposed catheter system is described in
Section III. The experimental setup and procedures are
explained in Section IV-A and the results are presented in
Section IV-C. Finally, the discussions and conclusions are
given in Section V.

II. RELATED STUDIES

Robotic catheters are redundant continuum robots with
infinite degrees-of-freedom (DoF) [18]. In [23], Marchese
et al. presented a high-level system identification algorithm
to estimate parameters of a soft spatial fluidic elastomer ma-
nipulator. The identification is performed by iteratively ad-
justing a parameter set p such that a model instantiated from
p follows the same N -segment endpoint Cartesian trajectory
as measured on the physical system. In [24], Penning et al.
characterized the frequency response of both the articulation
and insertion axes of a continuum manipulator. To evaluate
the open loop frequency response of each axis, a chirp
position function was input to the system with the catheter in
its neutral position. They used Matlab’s tfestimate function
for the transfer function estimation. Gilbertson et al. [25]
presented static and dynamic system identification of a soft
actuator system under two different load conditions that
loosely mimic actuation in a blood vessel. They used a
chirp signal to excite system for dynamic response analysis
and performed a grey-box system identification to solve the
parameters of nonlinear spring-mass-damper model structure.

In this paper, in order to characterize the catheter system
dynamics, a frequency response analysis is performed. When
compared to the aforementioned approaches, this study pro-
vides a conscise method for the system characterization and
instead of trying to model the complex nonlinearites of
the system, a linearization approach is followed to simplify
the system and then a black-box linear system identifica-

Fig. 2. (a) A proof-of-concept catheter prototype used in the
validation experiments. The unit of the dimensions is in mm. (b)
Diagram of the catheter prototype with one coil set. Each coil set
is composed of two orthogonal side coils and one axial coil.

tion is performed. A chirp current command is used to
excite the system to execute planar motions for a certain
frequency sweep. Three additional chirp commands with
different frequency sweeps are then used for validation of
model for 2D planar motions. Initially, an approximate input-
output linearization is performed using a pendulum model,
the remaining approximate linear dynamics are then iden-
tified using linear system identification. An auto-regressive
model with exogenous input (ARX) is initially selected
for the approximate linear system. The resulting model is
then simplified by model order reduction and this reduced
order model is used for estimating the transfer function
of the black-box catheter system. The estimated model is
then tested with free-space 3D open-loop Cartesian space
trajectories on the hardware. An error analysis is performed
on the resulting 3D trajectories to discuss the validation and
frequency characteristics of the estimated model.

III. DYNAMIC RESPONSE ANALYSIS

A summary of the catheter actuation and forward kinemat-
ics schemes that form the basis of the frequency response
analysis presented in this paper are given in Section III-A
for completeness. The analysis itself is explained compre-
hensively in Section III-B.

A. Catheter Actuation Model

In the proposed scheme, the catheter is embedded with one
or multiple coil sets along the body. Each coil set includes
one axial coil and two orthogonal coils (as shown in Fig. 2
[26]). In a magnetic field, magnetic torques can be generated
on these coils by passing through currents. This allows the
control of the catheter’s three dimensional deflection by
controlling the currents. The direction and amplitude of the
magnetic torque are determined by the cross product of the
magnetic moment from each coil and the magnetic field.

The magnetic torque MC generated on the electromagnetic
coils embedded on the catheter, is given by:

MC = −→µC × (RC,SB0,S), (1)

where the vector B0,S represents the main (B0) magnetic
field of the MRI system relative to the catheter base frame
S, RC,S ∈ SO(3)1 represents the rotation matrix between the
coil body frame C and the catheter base frame S, and −→µC

represents the total magnetization vector of the catheter coils

1SO(3) is the rotation group of R [27]
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Fig. 3. (a) Experimental configuration of catheter during system
identification.

−→
B0 denotes the direction B0 magnetization field

vector of the MRI scanner, −→g denotes the gravity vector direction.
S and C are respectively the catheter base and local coil coordinate
frames. θ is the deflection angle of the catheter relative to its rest
configuration. (b) 2D pendulum model of the catheter.

relative to the coil body frame C, which can be expressed
as:

−→µC = NxixAx
−→µx +NyiyAy

−→µy +NzizAz
−→µz. (2)

Nj represents the number of turns in the coil j, Aj is the
area enclosed by each turn of the coil j, and ij is the current
through the coil j. For simplicity, it can be transformed to2:

MC = −(RC,SB0,S)∧(Ni), (3)

where,

N =

NxAx 0 0
0 NyAy 0
0 0 NzAz

 , (4)

and

i =
[
ix iy iz

]T
. (5)

Liu et al. [5], [16] developed a method combining a
finite differences approach with beam theory and rotation
groups to model the proposed MRI-actuated catheter's three
dimensional deflection motion, including bending and tor-
sion. In [19], Liu et al. presented a Jacobian-based inverse
kinematics and open-loop control method for this system.
The workspace of the proposed catheter with multiple coil
sets is analyzed for optimization of the catheter design by
Liu et al. [26].

B. System Identification

In system identification, current commands that excite the
system by generating the magnetic torques are chosen as the
inputs. The deflection angle of the catheter is chosen as the
system output (Figs. 3-4).

The cross product in (1) represents an inherent nonlinearity
in the system actuation (Fig. 4). In order to approximately
perform input-output linearization to simplify system iden-
tification, the catheter deflection is modeled by a simple

2Symbol ∧ refers to skew-symmetic matrix of the preceding term. By Lie
algebra, so(3), of the rotation group SO(3) [27], skew symmetric matrices
(3) can be used to represent cross products (1) as matrix multiplications.

Fig. 4. Input-Output model of the catheter dynamics. i is the input
current of the coils and θ is the deflection angle of the catheter.
H(s) is the linearized dynamics of the catheter.

planar pendulum with the current carrying coil set at the
tip modeled as a solenoid (Fig. 3b). The net actuation torque
on the pendulum at pivot point P by the magnetic torque
and the gravitational torque is then given by:

τnet = τ1 + τ2,

= iANB0cosθ −mgLsinθ.
(6)

A is the area of solenoid. N is the number of turns of the
solenoid (Fig. 2). L and m are respectively the length and
the mass of the catheter prototype. i is the input current
commands to the system, θ = 90 − ϕ is the catheter
deflection angle, and ϕ is the angle between coil tangent
(or magnetization vector) and the magnetic field.

In order to perform approximate input-output linearization,
Eq. 6 is used to compute a net actuation torque from
input current commands. The actuation torque is then used
as an intermediate input to the black-box catheter system.
The output angle and the intermediate torque input is then
employed to perform linear system identification to identify
this black-box linearized dynamics. The approximate planar
pendulum model is chosen to put more emphasis on getting
a conscise framework to analyze the system behavior instead
of performing complex examinations of the out-of-plane
nonlinearities to characterize the system. Thus, only axial
coil is excited to apply planar actuation torque to system
and side coils (Fig. 2b) are not used to generate out-of-plane
input actuation torque.

A chirp signal with an amplitude of 100 mA and duration
of 300 s that sweeps the frequency spectrum from 0.5 Hz
to 8 Hz is used to excite the system. As the catheter
design is axially symmetric, the system identification for
the linearized model was only performed in one deflection-
direction. Hence, the chirp signals were used only for axial
coil excitation and thus yielded planar motions [19]. The
fixed catheter length, L, used in pendulum model (Fig. 3b),
yields reasonable approximation for the applied input chirp
signals. The error between the actual length of the bending
catheter (Fig. 3a) and the fixed catheter length (Fig. 3b) in the
pendulum approximation is less than 3 mm at the maximum
deflection angle (48 degrees).

The resulting motion of the catheter was measured using
an external camera and catadioptric stereo tracking [28]. The
final output of the catheter tracking is the location of the
catheter tip and the tangent vector of the coil. The upper limit
of the chirp sweep was chosen as 8 Hz in order to have suffi-
cient number of deflection measurement samples per period
(namely, 7 to 8 samples per period as recommended in the
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TABLE I. THE FIT ERROR RESULTS OF THE ESTIMATED AND
REDUCED ORDER MODELS TO TRAINING AND VALIDATION CHIRP
SIGNALS. THE ERROR BETWEEN THE OBSERVED SIGNAL AND
MODEL OUTPUT IS CALCULATED. FIT RESULTS ARE REPORTED
BY CALCULATING THE ERROR SIGNAL ENERGY AS A PERCENT-
AGE OF OBSERVED SIGNAL ENERGY.

Model Fit Error (%)
Data (Duration [s]) 15th order 2nd order

Training (300) 1.5109 3.2593
Validation 1 (360) 1.6524 4.6544
Validation 2 (300) 0.4682 1.4190

literature [29]) using the catadioptric stereo tracking system,
which was operating at 60 Hz sampling rate. Frequencies
beyond 8 Hz were also not excited to protect the catheter
hardware.

The choice of the model structure to represent a system is
driven by several factors such as coupling of plant and noise
parametrization, estimation difficulty, and bias consideration.
Autoregressive models with exogenous input (ARX) and
output error (OE) models are the two common choices in the
system identification literature [30], [31] as an initial selec-
tion for the model structure. Due to the limited knowledge of
the black-box model a priori and high reliance on the data,
an ARX model was selected as an initial structure in this
study to characterize the system. As the ARX model family
is linear in parameters, it provides an ease of computation
for the optimal model selection order despite its highly
restrictive parametrization, when compared to the OE family.

The optimal model order estimation using the net input
actuation torque (where the magnetic torque is larger about
an order of magnitude than the gravitational torque) and
output angle data resulted in a 15th order model. This
optimal model is used to observe the system modes, which
is then reduced to a 2nd order approximate model using
balanced truncation considering the Nyquist frequency of the
camera, which is 30 Hz. The resulting system is given by
the following transfer function:

H(s) =
1.761e04s+ 6344

s2 + 4.59s+ 1.136
. (7)

The bode plot of this system is superimposed on the
estimated 15th order model are given in Fig. 5. Based on the
bode plot, the cut-off bandwidth of the system is estimated
at around 1.3 Hz.

The resulting model is also examined using different
chirp signals. The first planar validation signal sweeps the
frequency spectrum from 1 Hz to 8 Hz and the second one
sweeps 0.5 Hz to 4 Hz. For these chirp signals, the error
signal between the observed signal and the model output is
calculated. The error signal energy (by Parseval’s theorem
[32]) as a percentage of the observed signal energy for the
estimated 15th order and reduced 2nd order models are given
in Table I and model output for the validation signal with
sweep from 1 Hz to 8 Hz is shown in Fig. 6. The reduced
model can capture the overal signal characteristics across
the frequency range and provides a reasonable trade off for
model complexity.

Fig. 5. Frequency response of the reduced 2nd order transfer
function superimposed on the the estimated 15th order system.
Also, shown are the experiment data and camera Nyquist frequency
(drawn with a black line), which is used during the model reduction.

(a)

(b)
Fig. 6. Shows the fit of the estimated and reduced order models to
validation chirp signal with sweep from 1 Hz to 8 Hz. (a) Original
scale. (b) Magnified scale.

IV. VALIDATION EXPERIMENTS

A. Experimental Methods

A concise dynamic reponse analysis approach is presented
in III. Inherent nonlinearity of the system is approximated
and the frequency response of the system is calculated using
in-plane motions. In this section, the validity of the results are
examined using out-of-plane motions. Accordingly, the pla-
nar dynamic model is validated using 3D spatial deflection
trajectories. Specifically, two distinct trajectories (lemniscate
and circle) were used for validating the system behavior
under the open-loop control. The trajectories of the catheter
tip were obtained by projecting a 2D geometrical shape on to
the catheter workspace [19]. These shapes are similar to the
circumferential and linear ablation lesions employed in atrial
fibrillation ablation [2]. Thus, they imitate realistic motions
of the desired application and preferred to simply testing
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catheter’s response in various directions.
There are 200 points along a single period of each tra-

jectory. With four repetitions, each trajectory has a total of
800 points. Each trajectory was commanded to the system
with different pause times between the trajectory steps. Pause
times are artificially introduced in between the trajectory
steps in order to acquire multiple camera images at each
step, which are averaged to reduce the noise in camera
measurements. Experimental data was collected in multiple
sessions, while each type of trajectory data was collected in
a single session.

The current corresponding to each point on these trajec-
tories was iteratively calculated using the Jacobian-based
inverse kinematics method presented in [19]. The calculated
currents were applied to actuate the catheter in the experi-
ments. The deflection motions were recorded and tracked by
the vision system.
B. Experiment Setup

The catheter prototype (Fig. 2) is embedded with one
current-carrying coil set, which includes one 100-turn axial
coil and two 30-turn orthogonal side coils. The coils are
made of heavy insulated 38-gauge enameled copper wires
(Adapt Industries, LLC, Salisbury, MD, USA). They are built
over silicone rubber tubing (Part number: T2011, QOSINA,
Edgewood, NY, USA). Please refer to [26] for further details
about the catheter prototype.

The experiments were conducted in a 3T clinical scan-
ner (Skyra, Siemens Medical Solutions, Erlangen, Ger-
many), as shown in Fig. 7a. The front view of the ex-
periment setup is shown in Fig. 7b. The catheter pro-
totype is mounted vertically inside an aquarium tank
(25.4 cm × 25.4 cm × 26.7 cm) and immersed in a
phantom filled with distilled water doped with a gadolinium-
based contrast agent. The aquarium tank is centered along the
central axis of the MRI scanner, but offset from the isocenter
to accommodate a mirror which displays the catheter in
side perspective. The mirror is needed because a camera
cannot capture the side motions of the catheter well from
outside the MRI scanner bore. The cables of the coils are
connected to a transconductance amplifier controller which
stays outside the MRI room. The controller box sets the coil
currents using a microcontroller which communicates with a
PC through a USB serial link. In this paper, the coil currents
are limited to 100 mA [26], [33] , which was the maximum
value allowed by the amplifier box. Before each experiment,
an MRI image displaying the LEGO® bricks in a coronal
slice was used for determining the alignment quality of the
experiment setup with the direction of the constant magnetic
field. The same experiment setup was used for the 2D planar
deflection experiments.
C. Results

The deflection motions were recorded and tracked by the
vision system. Fig. 8 shows a picture of the tracked catheter
in the catadioptric image space. The final output of the
catheter tracking is location of the catheter base, coil, and tip.
The results also include the tangent vector of the coil. The

(a) (b)
Fig. 7. (a) Experiment setup inside a clinical MRI scanner.
(b) Front view of the experiment setup. The catheter pro-
totype is immersed in a phantom filled with distilled water
doped with a gadolinium-based contrast agent. It is clamped
vertically by a mechanism made from LEGO® bricks. The
mirror next to the tank displays the actuated catheter in side
perspective.

Fig. 8. One processed image using a color-based segmenta-
tion algorithm for the labeled markers located on the base,
coil, and tip of the catheter. Green curves only simply
connect the markers and are not intended to represent the
whole body of the catheter.

validated catadioptric system provides high speed catheter
tracking data that can be compared to the MRI tracking
results as well as aid in frequency response modeling of the
catheter as a part of future work. For further details please
consult [28].

Fig. 9a shows the vision-tracked positions of the labeled
markers on the catheter (tip marker in blue, coil marker in
green and base marker in yellow), which performed the given
circular trajectory represented in red, with a 100 ms pause
time between individual trajectory points.

The root-mean-square (RMS) error between observed
trajectory captured by the vision system and the desired
trajectory was computed to calculate the open-loop accuracy
at different pause times.

As the implemented control is open-loop (which does not
use any feedback from measurement of catheter position) and
the catheter body is compliant, offsets between the given and
observed trajectories are expected, shown in Fig. 9a3.

The shapes of the trajectories were compared by ignoring
position and orientation offsets. Specifically, the trajectories
were allowed to be translated and rotated (but not scaled)
until the RMS error between them is minimized, and the
residual RMS error was used as the shape similarity measure.

The final results are reported in Fig. 9b shows the given

3A video attached to this manuscript demonstrates these catheter motions
inside the MRI scanner.
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Fig. 9. Catheter trajectories tracked via camera-based vision
system. Fig. 9a shows the tracked base, coil, and tip markers
together with the desired marker trajectory. Fig. 9b shows
the resulting tracked and desired trajectories after the rigid
body transformation for alignment without scaling.

Fig. 10. Visualization of the method utilized for estimating
the magnitude response for the catheter system based on
observed output and input desired trajectories.

Fig. 11. Magnitude and phase response analysis of the circle
trajectory

desired trajectory (red diamonds) and all the observed tra-
jectories (blue markers) after a rigid body transformation
alignments.

1) Evaluation of the Estimated Model: Dynamic response
of the catheter system identified (Fig. 5) in Section III-
B is evaluated. For this purpose, the magnitude and phase
responses of the circular trajectory are estimated based on
the desired input and observed output trajectories (Fig. 9b)
at different pause times. Then, the computed magnitude and
phase responses are compared with the dynamic response
(Fig. 5) of the estimated model given in (7).

To compute the magnitude response, at each pause time,
the closest plane to the observed 3D output trajectory was
calculated using singular value decomposition [34]. The
output trajectory was projected onto this plane. Then, a 2D
circle on the plane frame was fitted to the projected trajectory
points (Fig. 10). The same method was also applied to the
desired input trajectory. The magnitude response is then
calculated as the ratio of radii of the fitted circles to output

and input trajectories:

Magnitude (dB) = 20 log
routput
rinput

, (8)

where routput and rinput are respectively radii of the fitted
circles to output and input trajectories.

The phase response is estimated by computing the time
delay between the input and output trajectories [35], where
3D cross correlation function is utilized to compute the time
delay [32].

The maximum value of the cross correlation computation
gives the lag difference, τyx, between the observed output
and desired input trajectories. Time lag, ∆t, between input
and output is then given by multiplying the lag difference
with the corresponding pause time, tpause.

∆t = τyx · tpause. (9)

Subsequently, the phase shift between the input-output is
given as:

Phase (deg) =
∆t

T
· 360°, (10)

where T is the period of trajectory with T = N × tpause,
with N = 200 number of trajectory points per period and
tpause is the corresponding pause time in (9).

The estimated magnitude and phase responses are pre-
sented in Fig. 11, where frequency values are computed by
taking the reciprocal of the trajectory period T from (10),
F = 1/T . The magnitude response analysis shows that the
cut-off (3 dB) frequency of the system is on the order of
1-2 Hz. Furthermore, phase response decreases significantly
following system bandwidth. These observations match with
the dynamic response analysis (Fig. 5) presented in Sec-
tion III.

2) Evaluation of the Accuracy: The open-loop trajectory
tracking accuracy of the catheter system at different pause
times for both trajectories are given in Fig. 12 and Table II
to show the tip tracking and coil tangent orientation results
for circle and lemniscate trajectories at different pause times.
The 60 Hz camera tracking system has a sampling period of
approximately 16.7 ms. Thus, for pause times larger than the
camera sampling period, it was possible to obtain individual
tracking points per each input trajectory point. For pause
times less than the camera sampling period, the tracking
results were interpolated to match total number of input
trajectory points.

The reported RMS error values for the pause times larger
than 18 ms are consistent with the tracking results presented
in [19] and are in the range of 2-4 mm. These errors
are typical for open-loop control (and are expected to be
eliminated by proper closed-loop control).

In the tracking error results presented in Fig. 13 and
Table II, the tracking performance for both circle and lem-
niscate trajectories deteriorates significantly after 1-2 Hz.
This points that the bandwidth of the system is this interval,
which is consistent with frequency response analysis given
in Section III.
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(a) Catheter tip position (b) Coil tangent orientation

(c) Catheter tip position (d) Coil tangent orientation

Fig. 12. Tracking results for circle and lemniscate trajectories at different pause time between trajectory points. Figs. 12a,
12c show tip location together with the desired trajectory. Figs. 12b, 12d show coil tangent orientation.

(a) Circle trajectory error (b) Lemniscate trajectory error

Fig. 13. Tracking errors for circle and lemniscate trajectories at different pause times.

V. DISCUSSION AND CONCLUSION

In this paper, a dynamic response analysis of an MRI-
guided magnetically-actuated steerable catheter is presented.
In the presented approach, the system model is first ap-
proximately input-output linearized. Then, the remaining
approximated linear dynamics is identified using black-
box linear system identification techniques. The estimated
system model is evaluated with Cartesian space trajectories
under open-loop control of the catheter system in hardware
experiments. The goal is to present a concise framework to
perform system characterization, as apposed to modeling the
complex system nonlinearites.

The optimal estimated model is reduced utilizing the bal-
anced truncation method considering the Nyquest frequency

of the camera system used to track the catheter. The reduced
model shows satisfactory fit and the results demonstrated
that the catheter has a bandwidth of approximately 1.3 Hz.
The open-loop 3D tracking validation results presented in
Section IV-C revealed a system bandwidth of 1-2 Hz, which
is consistent with the system bandwidth of 1.3 Hz from the
dynamic response analysis.

One source of discrepancy is that, the frequency response
analysis Section III was performed with 2D planar tra-
jectories, whereas the open-loop validation experiments in
Section IV-C were performed with 3D trajectories. As this
study is a first step to evaluate frequency response behavior
of the proposed catheter system, a full system identification
with open-loop and closed-loop 3D trajectories remains as

TABLE II. SHOWS THE CHANGE IN RMS CATHETER TIP POSITION AT DIFFERENT PAUSE TIMES BETWEEN TRAJECTORY
SAMPLES FOR THE LEMNISCATE AND CIRCLE TRAJECTORIES.

Pause Time (ms) 1 3 5 8 10 12 15 18 20 25 50 100
Circle RMSE (mm) 12.33 9.51 5.26 4.80 3.52 3.46 3.32 3.22 3.14 3.24 3.17 3.24

Lemniscate RMSE (mm) 12.54 16.27 12.08 6.79 5.68 4.76 3.71 2.54 2.45 2.22 2.19 2.24
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a future work.
Additionally, this analysis only reveals the system behavior

for free-space trajectories as the goal is to pave the way
for free-space closed-loop control. As the catheter ablation
procedure is performed in contact with the tissue (Fig. 1a),
the free-space closed loop control will be followed by the in-
contact dynamic response analysis and subsequently catheter
surface motion control. Thus, the surface-motion dynamic re-
sponse analysis will be addressed in the subsequent research
and is outside the scope of this study.

As the catheter moves relatively slow, the impact of the
surrounding medium was not considered. The unmodeled
system dynamics remain as the other sources of error.

This analysis together with [19] paves the way for effective
and accurate control of the robotic catheter in a closed-
loop control system with feedback information from real-
time MRI-guidance. The open-loop accuracy level makes it
reasonable to expect that a closed-loop control system can
achieve the desired 1 mm accuracy level.
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