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Abstract—Robotic-assisted beating heart surgery aims to allow
surgeons to operate on a beating heart without stabilizers as if
the heart is stationary. The robot actively cancels heart motion by
closely following a point of interest (POI) on the heart surface—
a process called active relative motion canceling. Due to the high
bandwidth of the POI motion, it is necessary to supply the con-
troller with an estimate of the immediate future of the POI motion
over a prediction horizon in order to achieve sufficient tracking
accuracy. In this paper, two least-squares-based prediction algo-
rithms, using an adaptive filter to generate future position esti-
mates, are implemented and studied. The first method assumes
a linear system relation between the consecutive samples in the
prediction horizon. On the contrary, the second method performs
this parametrization independently for each point over the whole
the horizon. The effects of predictor parameters and variations in
heart rate on tracking performance are studied with constant and
varying heart rate data. The predictors are evaluated using a three-
degree-of-freedom (DOF) test bed and prerecorded in vivo motion
data. Then, the one-step prediction and tracking performances of
the presented approaches are compared with an extended Kalman
filter predictor. Finally, the essential features of the proposed pre-
diction algorithms are summarized.

Manuscript received May 13, 2012; accepted August 29, 2012. Date of publi-
cation September 28, 2012; date of current version February 1, 2013. This paper
was recommended for publication by Associate Editor M. Minor and Editor G.
Oriolo upon evaluation of the reviewers’ comments. This work was supported
in part by the National Science Foundation under Grant CISE IIS-0222743,
Grant IIS-0805495, Grant 11S-0905344, and Grant CNS-1035602; the National
Institutes of Health under Grant R21 HL096941; and Case Western Reserve
University, with a Support of Undergraduate Research and Creative Endeavors
award. This paper was presented in part at the the IEEE International Confer-
ence on Intelligent Robots and Systems, San Diego, CA, 2007, and the IEEE
International Conference on Robotics and Automation, Pasadena, CA, 2008.

E. E. Tuna, T. J. Franke, and M. C. Cavusoglu are with the Department
of Electrical Engineering and Computer Science, Case Western Reserve Uni-
versity, Cleveland, OH 44106 USA (e-mail: eetl2@case.edu; tjf6 @case.edu;
cavusoglu@case.edu).

0. Bebek was with the Department of Electrical Engineering and Computer
Science, Case Western Reserve University, Cleveland, OH 44106 USA. He
is now with the Department of Mechanical Engineering, Ozyegin University,
Istanbul 34662, Turkey (e-mail: ozkan.bebek @ozyegin.edu.tr).

A. Shiose was with the Department of Biomedical Engineering, Lerner Re-
search Institute, Cleveland Clinic, Cleveland, OH 44195 USA. He is now with
the University of Pittsburgh Medical Center, Pittsburgh, PA 15213 USA (e-mail:
as-1@heart.med.kyushu-u.ac.jp).

K. Fukamachi is with the Department of Biomedical Engineering, Lerner
Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA (e-mail:
fukamak @ccf.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2012.2217676

Index Terms—Active relative motion canceling, beating heart
surgery, prediction algorithm, signal estimation, surgical robotics.

I. INTRODUCTION

ORONARY artery bypass graft (CABG) surgery requires
C surgeons to operate on blood vessels that move with high
bandwidth. This rapid motion of the heart makes it difficult to
track these arteries by hand effectively [1]. Contemporary tech-
niques either stop the heart and use a cardio-pulmonary bypass
machine, on pump, or passively restrain the beating heart with
mechanical stabilizers, off pump, in order to cancel the bio-
logical motion of heart during CABG surgery. However, using
on-pump CABG surgery might cause the patient to suffer from
long-term cognitive loss due to possible complications as a con-
sequence of stopping the heart [2]. Off-pump CABG surgery is
limited to the front surface of the heart and significant residual
motion is observed during stabilization [3].

Robotic-assisted beating heart surgery replaces the conven-
tional surgical tools with robotic instruments, which are directly
controlled by the surgeon through teleoperation. The surgeon
views the surgical site through a camera mounted on a robotic
arm that follows the heart motion, showing the surgeon a sta-
bilized view [4]. A surgical robot, which moves simultaneously
with the heart, is used to track and cancel the relative heart
motion. Thus, the surgeon operates on heart as if it is station-
ary. This approach is called “active relative motion canceling
(ARMC).” This would eliminate the use of cardio-pulmonary
bypass machine (the pump) and prevent shortcomings of the on-
pump CABG surgery. It differs from the traditional off-pump
CABG surgery since in the proposed robotic-assisted surgical
system, heart motion is canceled with motion compensation [5].

The relatively fast and high-bandwidth motion of a point
of interest (POI) on the heart surface establishes challenging
requirements for motion tracking with high precision [6]. The
surgeon is required to operate on blood vessels whose diameters
vary from 0.5 to 2 mm and have a quasi-periodic motion at the
rates of 1-2 Hz. In order to perform precise operations on these
vessels, root-mean-square (RMS) position tracking error of the
POTI has to be in the order of 100-250 pm. Causal error feedback
control alone is not able to reduce the tracking error sufficiently.
A predictive controller which implements a receding horizon
model predictive control (RHMPC) in the feedforward path was
found to be necessary [7], [8].
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The primary goal of this research is to improve the tracking
performance of a surgical robot prototype as proof of concept
that the motion cancelation can be achieved. To this end, the
tracking performance research has primarily been focused on
developing estimation methods for use with an RHMPC. Such a
predictive controller needs an estimate of the future POI motion.
The estimate needs to be of a finite duration into the future,
which is referred to as the prediction horizon.

In this paper, heart motion prediction methods based on adap-
tive filtering techniques are studied. The implementations pa-
rameterize a linear system to predict the POI motion and rely
on recursive least-squares (RLS) adaptive filter algorithms. The
presented methods differ as the first one assumes a linear system
relation between the consecutive samples in the prediction hori-
zon, whereas the second method performs the parametrization
of the linear system independently for each point throughout
the horizon. The presented one-step adaptive filter and the gen-
eralized adaptive filter were initially proposed by Franke ef al.
in [9] and [10], respectively. The analysis of these predictors are
extended in this paper. In the literature, these predictors were
tested with very limited and short duration of constant heart rate
data. During the course of this research, these two algorithms
are exhaustively studied with a wide range of different prere-
corded in vivo constant and varying heart rate motion data. The
effectiveness and feasibility of these algorithms are studied by
simulations and evaluated on a three-degree-of-freedom (DOF)
hardware.

The rest of this paper is organized as follows. Related works
in the literature are described in Section II. In Section III, exper-
imental heart motion data are analyzed. Problem formulation is
explained in Section IV. Sections V and VI describe the predic-
tion methods and discuss how the methods differ from each other
to create estimations throughout the prediction horizon. Imple-
mentation details are addressed in Section VII. In Section VIII,
simulation and experimental results are given. Finally, the dis-
cussion and conclusions are presented in Sections IX and X,
respectively.

II. RELATED WORKS IN THE LITERATURE

This paper is concerned with estimating the prediction hori-
zon for RHMPC—a control scheme that relies on the estimate
of the prediction horizon as a reference signal. There are several
research groups that have already studied and proposed ways to
estimate the POI motion on the heart surface.

Ortmaier et al. [11] used Takens Theorem to develop a robust
prediction algorithm, anticipating periods of lost data when a
tool obscured the visual tracking system. Estimates were gener-
ated from a linear combination of embedding vectors of previous
heart data. The weights were chosen such that better estimating
vectors are weighted more heavily. The algorithm had a global
prediction technique that correlated ECG signals to heart mo-
tion. It was able to estimate the system behavior when visual
contact of the landmark was lost for some period of time.

Ginhoux et al. [8] separated breathing motion from heart
motion in the prediction algorithm. The breathing motion was
treated as perfectly periodic, since the patient would be on a
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breathing machine. The heart motion was predicted by estimat-
ing the fundamental frequency, as well as the amplitude and
phase of the first five harmonics. This prediction was used to
estimate disturbance so that the controller could correct for it.

Rotella [7] used the previous cycle of heart motion data as an
estimate of future behavior. This led to problems since the POI
motion was not perfectly periodic. Bebek and Cavusoglu [5] im-
proved upon this prediction scheme by synchronizing heart pe-
riods using ECG data and separated heart and breathing motion,
predicting only heart motion. Bebek noted that the prediction
method still could be improved.

Bader et al. [12] presented a model-based approach for re-
constructing the position of any arbitrary POI and for predicting
the heart’s surface motion in the intervention area. They mod-
eled the POI motion by means of a pulsating membrane model.
The membrane motion was described by means of a system
of coupled linear partial differential equations (PDEs) and ob-
tained a bank of lumped systems after spatial discretization of
the PDE solution space by the finite spectral element method. A
Kalman filter was employed to estimate the state of the lumped
systems by incorporating noisy measurements of the heart
surface.

Richa ef al. [13] implemented and compared the Fourier-
series and vector autoregressive models that were used in the
literature to estimate the immediate future of a POI. They em-
ployed extended Kalman filter (EKF) as the recursive estimation
algorithm for both models. More recently, Richa et al. [14] pro-
posed a dual time-varying Fourier series motion model, which
models the heartbeat and breathing components of the heart
motion explicitly. They used an EKF to estimate the model pa-
rameters recursively. The presented model was used to predict
future heart motion for bridging tracking failures and reestab-
lishing tracking POI motion in case of occlusions.

Batcha et al. [15] classified and reviewed existing predic-
tion algorithms in the literature and proposed a prediction tech-
nique based on amplitude modulation (AM). They took into
account of the coupling between the breathing and heartbeat
components of heart motion and expressed the cardiac motion
as a sum of a breathing component and an amplitude modu-
lated heartbeat component. Breathing component, carrying and
modulating signals of the AM heartbeat component were repre-
sented by a Fourier-series model. Only the first low-frequency
heartbeat harmonics were modulated and heartbeat component
was reparametrized by this modulation. The parameters of the
developed model were estimated by a RLS algorithm.

Yuen et al. [16] developed a 1-DOF ultrasound-guided mo-
tion compensation system for cardiac surgery. The surgical sys-
tem integrates 3-D ultrasound imaging and a robotic instrument
with a predictive controller that compensates for the 50—100-ms
imaging and image processing delays to ensure good tracking
performance. Yuen et al. [17] used EKF algorithm to predict
the future position of mitral valve annulus motion. The EKF
filter was used to feedforward the trajectory of a cardiac target
in order to compensate time delays occurred due to the acquisi-
tion of motion data by the 3-D ultrasound imaging. They tested
the performance of EKF in prediction and tracking in the pres-
ence of high measurement noise and heart rate variability. They
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reported RMS synchronization errors of 1.5 mm for trajectories
derived from clinical heart rate variability data.

This paper studies new estimation algorithms into the con-
troller described in the earlier work of Rotella [7] and Bebek and
Cavusoglu [5]. Two novel prediction techniques using adaptive
filters are presented which were originally described by Franke
et al. in [9] and [10]. The presented approaches are used in
place of the prediction algorithm of Bebek and Cavusoglu [5].
Since the new predictors are parameterized by a least-squares
algorithm, the predictors are inherently robust to noise. The
predictors only use recent past and present observations making
them less susceptible to differences between heart periods than
the algorithm of Bebek and Cavusoglu [5]. Although Ginhoux
et al. [8] formulated prediction for periodic POI motion, no as-
sumptions are made a priori in this study toward periodicity of
the system, rather the predictors are unconstrained so that they
can best mimic the POI motion. This is the first study that uses
real varying heart rate data to perform heart motion tracking.

In the following sections, tracking and prediction perfor-
mance of the adaptive are predictors presented, and they are
compared with the EKF predictor used in the study of Yuen
etal [17].

III. ANALYSIS OF HEART DATA

In this section of the paper, experimental setup for the data
collection is explained. Varying heart rate motion data collected
via this setup are further analyzed. Data were collected from
three calves and all the study was performed with on bench-top
with these prerecorded data. From each calf, a duration of 736 s,
472 s, and 340 s of data was processed and used in this study.

A. Experimental Setup for Measurement of Heart Motion

The prerecorded data used in this study were collected us-
ing a sonomicrometry system (Sonometrics Inc., ON, Canada).
The sonomicrometry system has also been the sensor of choice
in our previous work for measuring heart motion for robotic
ARMC [5]. A sonomicrometer measures the distances within
the soft tissue via ultrasound signals. A set of small piezoelec-
tric crystals attached to the tissue while heart is still beating.
These crystals are used to transmit and receive short pulses of
ultrasound signal, and the “time of flight” of the sound wave as
it travels between the transmitting and receiving crystals is mea-
sured. Using these data, the 3-D configuration of all the crystals
can be calculated [18]. Absolute accuracy of the sonomicrom-
etry system is 250 um (approximately a one-fourth wavelength
of the ultrasound) [19].

In the experimental setup, one crystal of the sonomicrometry
system was sutured on the heart while heart was beating. While
collecting measurements, this crystal on the heart was placed in
two different locations. The first location, which is referred to as
“Top” in the rest of the paper, was located on the front surface.
Specifically, the sonomicrometry crystal was placed at 1 cm
laterally from the left anterior descending coronary artery and
8 cm cranially from the left ventricular (LV) apex. The second
location, which is referred to as “Side,” was the location on the
side surface of the heart. Specifically, in this case, the crystal

Pacemaker

<
{} | .
T — Sonomicrometer

Leads

Fig. 1. Two sonomicrometer crystals that are sutured on the anterior and
posterior surfaces of the heart are used for data collection. Pacemaker leads and
sonomicrometer base are also visible in the image.

was placed at 5 cm laterally from the left anterior descending
coronary artery and 10 cm cranially from the LV apex. Five
other crystals were asymmetrically mounted on a rigid plastic
base of diameter 60 mm, on a circle of diameter 50 mm, forming
areference coordinate frame. This rigid plastic sensor base was
placed in a rubber latex balloon, which was filled with a 9.5%
glycerine solution. The reason of using such a setup was to
ensure a continuous line of sight between the base crystals and
the crystal on the heart surface through a liquid medium for
proper operation of sonomicrometry sensor system. Fig. 1 shows
the experimental setup for measurement of heart motion. The
sonomicrometer crystals that are sutured on the heart can be seen
from the figure. The pacemaker leads that are used to change
the heart rate and the sonomicrometer base are also visible.

Data were processed offline using the proprietary software
provided with the system to calculate the 3-D POI motion. The
only filtering performed on the data produced by the sonomi-
crometry system was the (very limited) removal of the out-
liers, which occasionally occur as a result of ultrasound echoing
effects. Although the sonomicrometry system can operate at
2-kHz sampling rate for measuring the location of the POI crys-
tal relative to the fixed base, in our test experiments, we have
collected data at sampling rates of 257 and 404 Hz in order to
collect redundant measurements.

B. Analysis of Varying Heart Rate Motion Data

The motion of the heart surface is quasi-periodic in nature.
The POI motion on the heart is primarily the superposition of two
effects: motion due to heart beating and motion due to breathing.
Each of these signals closely resembles periodic signals.

In practice, the statistics of heart motion is likely to change
during surgery. Such a change would result in variations in the
underlying dynamics of the POI's motion. In order to explore
the effects of these slow variations on the tracking performance
and investigate how the adaptive algorithms will adjust to these
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Fig. 2. Power spectral density (PSD) of the heart motion in the z-direction.
(A) PSD of heart motion with constant heart rate. Tall, narrow peaks with the
absence of intermittent frequencies indicate largely periodic motion of the heart.
(B) PSD of heart motion with varying heart rate.

changes, two distinct types of experimentally collected heart
data are used in this study. In the first type, heart rate is constant
whereas it is varying in the second type.

Fourier analysis of the heart signal data with constant heart
rate reveals how this periodic nature is prevalent [see Fig. 2(A)].
The first peak corresponds to lung motion, which is estimated by
filtering the heart motion data using a low-pass Equiripple FIR
filter of cutoff frequency 1.0 Hz. It has a fundamental frequency
of approximately 0.17 Hz, f,, with first harmonic at 0.33 Hz is
appearing significant. The heart motion itself has a fundamental
frequency f;, of 1.66 Hz, corresponding to 100 beats/min, with
the first four harmonics clearly visible in the figure. The POI
motion has a broader bandwidth and can be approximated with
an error less than 140 ym RMS with frequency components
up to 26 Hz. These results are consistent with the heart motion
measurements reported by Groeger et al. [20]. The peak-to-peak
amplitude of the POI motion is 8.39 mm, with a RMS value of
3.55 mm. The sharpness of these peaks indicates that the har-
monics decay very little in time, meaning that the overall motion
of the POI is similar to a superposition of periodic signals.

In order to change the heart rate, an artificial pacemaker was
employed which uses electrical impulses to regulate heart rate,
generated by electrodes contacting the heart muscles. Initially
heart was allowed to beat for 40 s at 95 beats/min. Then, the heart
rate was gradually increased from 95 to 152 beats/min by ap-
proximately 10 beats/min steps and then decreased in the same
way, where heart was allowed to beat for at an average 15 s ata
particular heart rate. Fig. 3 shows the variation in heart rate with
respect to time for the heart motion in the x-direction. Addition-
ally, a spectral analysis of the data is presented in Fig. 4, which
shows the spectrogram of the z-component of varying heart rate
motion data. Variations in the heart rate through data duration
can be evaluated from the spectrogram, which are consistent
with Fig. 3. The maximum frequency is adjusted to 10 Hz for
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Variation of Heart Rate vs Time for Heart Motion in x-axis
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Fig. 3. Variation of heart rate with respect to time for the heart motion in

z-direction. An artificial pacemaker is used to vary heart rate while collecting
data.
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Fig. 4. Frequency spectrum of the z-component of 3-D varying heart rate
motion. Color mapping on the right corresponds to the intensity values of the
frequency components.

a clear frequency resolution and harmonic representation. The
spectrogram is obtained by computing a fast Fourier transform
(FFT) using a Hanning window.

In the Fourier analysis of varying heart rate data, Fig. 2(B),
the first observable dominant mode at 0.17 Hz corresponds the
breathing motion, similar to constant heart rate data, with a
significant first harmonic at 0.33 Hz. The remaining motion due
to the beating of heart shows the fundamental frequencies of
heart motion for different heart rates. The peaks at 1.58, 1.81,
2.03, 2.18, 2.42 and 2.54 correspond to a heart rate of 95, 110,
120, 130, 145, and 152 beats/min, respectively. The peak-to-
peak amplitude of the POI motion is 7.43 mm, with an RMS
value of 3.38 mm.

IV. PROBLEM FORMULATION

The control algorithm establishes the most essential part of
the robotic tools for tracking heart motion during CABG surgery.
As explained in Section III, low-frequency components of heart
motion result from breathing and high-frequency components
correspond to the heartbeat component. Breathing motion can be
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Fig. 5. Schematic of the prediction problem. The circles represent past ob-
servations, now in memory, the “X” is the current observation, and the short
curve originating from there is the horizon estimate. The predictor takes the past
observations and produces the horizon estimate from past observations.

easily canceled by using a purely feedback controller due to its
low bandwidth. However, rapid motion of heartbeat component
possesses demanding requirements on the control architecture
in terms of the bandwidth of the motion that needs to be tracked.
This necessity resulted in utilizing a feedforward algorithm in
the control architecture in order to cancel high frequency com-
ponents of the heart motion after the breathing motion is filtered
out. In this study, an RHMPC (originally developed in [5])
was employed as the feedforward control algorithm, requir-
ing an estimate of the immediate future of the POI motion. If
the feedforward controller has high enough precision to per-
form the necessary tracking, then the tracking problem can be
reduced to predicting the estimated reference heartbeat signal
effectively [5].

The following notation will be used for formulating the mo-
tion estimation problem. Let z; represent an observation at time
1. In this case, z; is a 3-D column vector representing the location
of the POI in Cartesian coordinates. At a given time step n, the
observation z,, indicates the current 3-D position of the heart.
Then, the observation z,_; represents the previous position of
heart, and the older observations are referenced by decreasing
subscript index, e.g., 2, _5 is the observation from five samples
ago. In a similar fashion, 2, ;1 represents the next observation.
Yet, this observation has not occurred, and will not be known
until it becomes the present value. The estimate for the next
observation is introduced as 2, 1.

Using this notation, the prediction problem can be posed
as follows: Given the /NV-dimensional vector of known samples
leading up totime n, [2,,, 24 1, -+, 2n_~n+1])" , find the best esti-
mate of the M-dimensional horizon (2,11, 2049, -, Znsar)t
Fig. 5 provides a graphical schematic of this problem. The best
estimate is defined to be the one that minimizes the square of
the estimation error, where the estimation error is the differ-
ence between the prediction and the observed value at that time.
Once a method is established to predict the next observations, a
sequence of future observations can be estimated.

Two adaptive filter-based motion estimation algorithms are
presented in this paper to estimate reference heartbeat signal,
namely one-step adaptive filter-based motion estimation algo-
rithm and a generalized adaptive filter-based motion estimation
algorithm. These two methods formulate and then parameterize
the model of heart motion differently as described in Sections
V and VL.

V. ONE-STEP MOTION ESTIMATION ALGORITHM

The POI motion is a continuous-time dynamic system (see
Section IV). To establish a method for predicting future positions
of POI, an equivalent discrete-time system has to be used. Yet,
neither the state space nor the dimension of the heart is obvious.
Therefore, to simplify the prediction method, a finite and low-
order state vector must be employed in the heart model. The
quasi-periodic nature of heart motion (see Section III) allows
the state transition function to be approximated as linear by the
following intuition.

The sharpness of the peaks of significant harmonics indicates
that the harmonics decay very little in time, meaning that the
overall motion of the POl is similar to a superposition of periodic
signals [see Fig. 2(A)]. Therefore, for the constant heart rate
motion data, a linear system can easily be constructed, which
has a frequency response that mimics the heart signal’s Fourier
representation. The transient response would then resemble the
observed heart data. Thus, given the current state of the actual
heart signal as initial values for the system, the transient response
would follow the actual heart motion—giving a prediction. Yet,
it is important to note that this linear system modeling is not
valid for the varying heart rate motion data [see Fig. 2(B)].

Finally, if the state was formulated as a stacked vector of past
observations, then the determination of the initial state would
be trivial. A linear system of the aforementioned specifications
would meet the requirements for the heart model transition func-
tion. However, the model would still need to be parameterized
in a way to statistically minimize the error of the prediction.

A. Model of Heart Motion

The heart position data consist of 3-D vectors representing
position. These vector samples are assumed to be generated
from a vector autoregressive model (VAR). A VAR process
has multiple output signals that are correlated with each other.
The model which establishes the heartbeat component of heart
motion is given by the following equation [21]:

N
=) Aifiei +

i=1

ey

In this case, it is an Nth-order VAR model. Each observation is
given by a weighted sum of past observations, and is perturbed
by noise given by 7. Noise vector ;. is assumed to be zero
mean white noise. Since the linear combination of past observa-
tions account for correlation between observations, for any two
noise vectors 4y and 7;, ¥ is uncorrelated with ; for i # k.
Since the noise vector is assumed to be white, it is not useful
when generating predictions of future values. Therefore, when
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Fig. 6. Adaptive filter is arranged to minimize the error between the estimate
for the current observation, calculated in the last iteration, and the actual ob-
served value. This way, the weights of the filter are statistically optimized to
estimate one step ahead.

parameterizing the equation for the purpose of prediction, only
the weighting matrices need to be estimated.

The VAR model given in (1) can be reformulated in state-
space canonical form as follows:

Xk = @)Z;H- + I'ty,

& = CX}. )
This system can be reformulated using an arbitrary state vector;
however, a stacked vector of past observations simplifies the
determination of the initial state, parametrization of the state

transition matrix ®, and generation of the prediction horizon. In
this case, ® is in canonical form and can be written as

A Ay Ay
b= 0 7 3)
0

Future observations of the system are given by solving the
state space solution at time n. In order to find the expected tra-
jectory, we take the expectation of (2) and find that the solution
takes the form

E{z, 41} = CO* X, 4)

where the aforementioned formula gives the horizon estimate
made at time n for a value k steps into the future. Note that
since ®" is only computed for k& < M, where M is the horizon
length, ®* always remains finite. Therefore, stability of ® is not
a concern. Since v'is unknown, but its expected value is zero by
construction, it does not appear in the solution to the expected
trajectory.

B. Parametrization

Traditional system identification problems using adaptive fil-
ters arrange the filter such that the input to the filter is the
system’s input and the desired response is the system’s desired
response. This way, the filter converges toward an approxima-
tion of the system’s input—output relation. However, (2) is driven
by white noise input vector ¢/. This input is unknown and unable
to be predicted for future observations. Thus, deriving an input—
output relationship for the heart motion would be impractical.
Instead, the adaptive filter is arranged as a one-step predictor
(see Fig. 6). The desired response is the heart position’s current
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observation, and the input to the adaptive filter is the previous
heart observations. The adaptive filter adjusts its filter weights
such that it generates the statistically best estimate for the next
observation, given only the current and past observations.

In order to generate the predictions, the coefficient matrices
A;, from (1) and, equivalently, the matrix ® from (2) need to be
estimated. The state transition matrix ® is in controllable canon-
ical form; therefore, estimating A; is sufficient to parameterize
the estimated state transition matrix denoted by ®. As can be
seen from (1), the matrices A; correspond to tap weights in a
transversal filter. In a one-step predictor, when it has converged
to a solution, its filter weights are precisely the matrices needed
to parameterize d. This way, the adaptive algorithm estimates
the matrix ®.

C. Recursive Least Squares

RLS is chosen as the adaptation algorithm to update the filter
weights. RLS is a method that updates a least-squares solution
when a new piece of data is added. In practice, the RLS solution
would approach the actual solution, even if the initial estimates
for the solution were wrong. To formulate the RLS algorithm
for vector samples, the one-step prediction problem needs to be
stated as a least-squares problem

[25712572 e ZLN] wh = Zg ()

where the objective is to find 1/ such that the square of the error
between the two sides of the equation is minimized. At any time
step, 2, is the current position of POL and [2] ;2T ... 21 ]
is the N-dimensional vector of past positions. From this repre-

sentation, it is clear that

W =[A; Ay -+ Ay] (6)

where A; are the weighting matrices from (1).

Using the statement of the least-squares problem for the one
step estimator in (5), the RLS algorithm can be derived. The
derivation of the vector-valued RLS algorithm is analogous to
Haykin’s derivation of the scalar case [22]. Since W is updated at
every time step, the estimator is able to adapt to slowly changing
heart behavior.

If the adaptive algorithm is able to forget the past, just as it
would be able to converge to a stationary signal, it can track
a signal with changing statistics [22]. Accordingly, the RLS
algorithm is formulated with past observations exponentially
windowed. The exponential window parameter A is multiplied
to each observation at each iteration, such that more recent
observations carry more weight. Thus, least-squares solution
places a greater importance on minimizing error for the more
recent observations and their prediction than on older ones, i.e.,
A< 1[22].

From the combination of weighted memory and convergence
to the optimal solution, if the statistics of the heart motion change
in time, the RLS algorithm is able to adapt to the new heart
behavior and the filter can track the ideal time-varying solution.
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D. Prediction

Following from (4), the one-step prediction is

w . - 73n+1- (7)

Zn—N+1
Once W is determined by (6), the stacked vector of past obser-
vations is shifted down by one observation size and making the
first past observation the current position z,,. Then, by matrix
multiplication, the one-step prediction Z,,+; on the horizon is
computed, which is precisely the expected value of z, 1 from
(1).

The prediction horizon of length M starting at time n is the
solution to (4) with initial condition vector being the stacked
vector of the past N observations.

In the actual implementation, predictions over the horizon
length are generated by iterating this function several times.
This avoids the computational complexity of calculating ®*
and using it directly to compute the predictions. The calculation
of X’n = Q)Xn,l is simplified by calculating 2, ; ;; by (7), shift-
ing the stacked observation vector X down by one observation
size and making the first observation the current estimate. This
way, the computational complexity of iterating the state vari-
able increases proportional to N, as opposed to N2. Since the
observation matrix C' from (2) simply retrieves the first obser-
vation from X, multiplication by C' is not necessary because the
observation can be directly indexed and removed.

This recursive relationship can be written explicitly. If W is
factored as W = C'® 1, where

@071 . [Zru ..

C:lzn,..

A T
- [ZnJrlzzna ceey anNJrQ]

TSz C=[T0---0]

DN} Zn7N+1}T
< Zn—N-ﬁ—l}

then it is possible to define a matrix U such that it maps the
memory of past observations to the expected horizon. In this
case

O®0,1
2
Cog 4
U =
M
Copy
U: (Znazn—lv RN zn—N—&-l) - (271,+1727L+2a ERE 27L+1W)' (8)

Using the aforementioned described method for obtaining an
estimate, the horizon is generated by collecting the next M es-
timates of the POI trajectory. Each time the process starts, the
current state vector is composed of N — 1 past observations to-
gether with the current observation. The first one-step prediction
is generated by this state vector. Then, the state vector is shifted
down by one observation size and the new prediction is used as
the current observation. By following this procedure, the next
M estimates in the prediction horizon are generated. This col-
lection of M estimates is the expected POI trajectory given the
N — 1 past observations and the current observation. In order to

generate the next prediction horizon at the following time step,
the aforementioned procedure is applied to the new state vector,
where the new state vector is composed of the new actual heart
position data and corresponding N — 1 past observations.

VI. GENERALIZED LINEAR PREDICTION

In Section V, the optimal linear one-step predictor, in the
sense of prediction error magnitude, is formulated and used
recursively to generate predictions. This method approximates
the heart dynamics as being a linear discrete time system. In the
generalized prediction method that is explained in this section,
the assumption of a linear system relation between consecutive
time samples is abandoned. Instead, a linear estimator for each
point in the horizon is independently estimated. This is done by
extending (7) as follows:

Zn Znt1
Zn—1 Znyo

Vv = )
Zn—N+1 én-‘rAM

where V is the estimation matrix that maps from the collection
of observations to the expected horizon. In the same way as
W was parameterized, RLS is used to determine V' online and
adaptively. However, since (9) contains the estimated values
that are being solved for, it is unsuitable for implementation
via RLS as is. This can be solved by assuming POI statistics
to be stationary, or at least slowly varying, which makes V'
approximately constant. The assumption of time invariance of
the heart statistics is utilized to introduce M delays so that all
quantities have been observed when solving for V/

Zn—M Zn—M+1
Zn—M -1 Zn—M+2
. . (10)
Zn—N—-M+1 Zn

The analogy can be made between (10) and an adaptive filter.
The right-hand side is the desired output, and the observation
vector on the left-hand side is the input. Further, introducing the
estimation matrices

. T 5 5 5 T
(I)O,i : [zn sy Z7L—N+1] - [Zn-&-iv Zn4idly e aZ—N+n+i,]

for 1 < i < M,V can be decomposed similar to U in (8) as

C®g

C‘I)O’Q

V= (11)

C®y i

The generalization of this prediction method results from the
fact that, unlike in (8), ®( ; are parameterized independently
and not, in general, equal to ®/, ;. The predictor is implemented
in a similar way to the previbus vector RLS adaptive filter.
The adaptive filter is formulated to solve the delayed estimation
(10). This is equivalent to using a bank of n-step predictors
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but is more computationally efficient. The largest cost in the
RLS algorithm involves updating the inverse covariance matrix
of the inputs. The generalized predictor is an improvement on
to the one-step predictor, since in generalized predictor each
estimate is using the same input vector. As a result, the update
of state vector only needs to be done once, providing a dramatic
reduction in computational complexity of one-step predictor
when predictions are being made at many points throughout the
horizon.

VII. IMPLEMENTATION DETAILS
A. Correlation Between Signals

The one-step prediction method described in Section V for
generating estimates uses the matrices A; as weights for the
vector observations. This allows for motion along one axis to be
correlated with motion on the other two. This feature comes at
a significant computational cost. A less computationally intense
method would be to treat motion of the POI on each axis as being
independent and using a predictor of the same order for each
individual axis. Since it would use three scalars to weight each
past data sample, as opposed to a 3 X 3 matrix, it would require
one-third of the computational effort to process the same number
of past observations. This would allow, in a single-time step, for
more samples of past data to be processed when generating the
next prediction.

In order to decide which option is best for implementation,
the effectiveness of each estimate per the computational effort
needs to be determined. In the independent predictor, compu-
tational complexity is equivalent to the order of the adaptive
filter used for the three independent RLS predictors for each
individual axis. On the other hand, for the correlated predictor,
the computational complexity is equivalent to the three times
the order of adaptive filter used. The reason is a 3 x 3 matrix is
used to weight each past sample instead of three scalars, which
is the case in the independent predictor.

A simulation study is performed in order to test these two
different options, where only prediction performances are com-
pared. For both correlated and independent predictors, the sim-
ulation was done by using a 56 s prerecorded constant heart rate
data which were processed at a sampling rate of 257 Hz. Each
predictor generated the one-step prediction for each sample of
the heart data and the average magnitude error is calculated
between the actual data and the predicted data. The average
magnitude error is shown for both systems in Fig. 7. The first
x-axis located at the bottom of the plot shows the order of the
correlated predictor. The second x-axis located at the top of the
plot shows the order of the independent predictor. The axes are
scaled such that filters with same computational complexity are
aligned to have same abscissa.

The results in Fig. 7 show that treating the heart signals as
being correlated yields better estimates when the computation
effort is low. Typical complexity for an online estimator would
fall in the 15 to 50 region.

Fig. 7 reveals that as the order increases, the one-step predic-
tion error decreases. Thus, the error in the prediction horizon
tends to decrease as well. The one-step error is monotonically
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Fig. 7. Comparison plot for independent and correlated signal predictions.
The independent predictor complexity is equivalent to the order of adaptive
filter used for RLS predictors for each axis. Correlated predictor complexity
is three times the adaptive filter order. The trend of the plot is that for the
computational effort required, accounting for correlation between signals yields
better results. The x-axis at the bottom shows the correlated predictor order. The
z-axis at the top shows the independent predictor order. The axes are scaled to
align filters with same computational complexity on both axes.

decreasing in magnitude because if the order is increased and the
new weights were held to be zero, we would have the same er-
ror of the lower order case. Therefore, the one-step error would
never increase with increasing adaptive filter order. However,
minimizing the one-step error does not necessarily correspond
to minimizing the error at some arbitrary time in the prediction
horizon.

B. Prediction Error Within the Time Window

Section VII-A studied the effect of predictor order on the pre-
diction error for a fixed amount of time in the future. However,
the prediction error varies based upon how far it is predicted
into the future. Fig. 8 shows the error across the prediction hori-
zon of the correlated predictions for several complexities—as
calculated in Section VII-A. The figure is created in the same
manner as described in Section VII-A.

The behavior of these plots appears to be linear for times in
the immediate future, and holds particularly well for the lower
complexity cases. The monotonically increasing error with lead
time displayed in this plot reflects that the quality of the estima-
tion decreases as you attempt to estimate further into the future.
This generalization will be useful for allowing the predictive
controller to properly weight the estimates in the horizon when
calculating the control law.

C. Sampling Time

Sampling time is an important parameter for the performance
of the estimator. A higher sampling rate results in more of
the higher frequency information to be incorporated by the
estimator. Running at a lower sampling rate means that there
is a larger numerical difference between samples, which is
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Fig. 8. Plot showing how the magnitude of the error varies throughout the pre-
diction horizon for the correlated predictor. The data are processed at a sampling
rate of 257 Hz. The prediction horizon used in the model predictive controller
would correspond to seven samples in length at this frequency. Additional points
are displayed to illustrate the trend.
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Fig. 9. Predictions can be made from a downsampled version of the 2-kHz
POI signal. High-frequency processing lends to problems with numerical accu-
racy, and low-frequency processing can misrepresent the dynamics by excessive
interpolation. This plot illustrates this tradeoff and suggests an optimal down-
sampling factor of 15 for the predictor.

important in the finite precision implementation. In addition,
to predict over a fixed length horizon at a lower sampling rate,
fewer iterations of the predictor need to be computed. Finally,
for a predictor of a fixed length, the sampling rate corresponds
to how much time is between each sample—translating to how
far back the system has memory. In Fig. 8, the predictor order
translates to the number of past observations available to the
predictor, whereas the sampling rate corresponds to the spacing
between those points.

The control algorithm used by the 3-DOF robotic test bed run
at a sampling rate of 2 kHz. This is well above the Nyquist rate
for heart motion signal which, for 100 beats/min and allowing
for six harmonics, is about 20 Hz. The RMS position error versus
sampling rate for the 16th order one-step predictor are plotted in
Fig. 9. From this plot, it appears the ideal downsampling rate in

this controller is 15—corresponding to a processing frequency
of 133 Hz. This optimal value is a tradeoff between the numerical
problems associated with calculating predictions using a finite
number of samples at high sampling rates and the inaccuracy
caused by interpolation and aliasing.

VIII. EXPERIMENTS AND RESULTS
A. Three-Degrees-of-Freedom Robotic Test Bed

The proposed estimation algorithms were tested on a PHAN-
ToM Premium 1.5A haptic device, which is a 3-DOF robotic
system. The nonlinearities of the system (i.e., gravitational ef-
fects, joint frictions, and Coriolis and centrifugal forces) were
canceled independently from the controller. In order to maintain
the accuracy of the experiments, the robotic test bed was brought
to a selected home (zero) position, in the center of its workspace
(more details can be found in [23]), before each experiment.

The controller used by Bebek and Cavusoglu [5] was mod-
ified to include the new prediction algorithms. The trials used
the prerecorded heart motion data described in Section III. The
robot was adjusted to follow the combined motion of heartbeat
and breathing. The system used online streaming position data
in place of real-time measurements. The controller was imple-
mented in XxPC Target and run in real time with a sampling time
of 0.5 ms on a Intel Xeon 2.33 GHz Core PC. The linearized
robot model was controlled using RHMPC. The RHMPC was
formulated to track the horizon estimate weighted by a quadratic
objective function. The encoder positions on the PHANToM
were recorded, and these positions were transformed into end-
effector positions. The reported RMS errors were calculated
from the difference between the prerecorded target point and
the actual end-effector position calculated from joint angles.

B. Simulation and Experimental Results

The same control method and reference data were used while
running simulations and experiments. During the trials, a 16th-
order correlated signal one-step estimator and a 10th order gen-
eralized estimator predicting four different future points in the
25-ms horizon were used and quadratic interpolation was ac-
counted for the intermittent points. The 25-ms horizon corre-
sponds to 50 points in the future. This length of horizon was cho-
sen for the optimum error/performance ratio [5]. The predictors
were downsampled by a factor of 15, processing observations
that were 7.5 ms apart. The experiments were carried out using
two different constant heart rate data and four different varying
heart rate data.

Experiments were run ten times with the estimation algo-
rithms and again with the actual heart motion data as future
signal reference for the prediction horizon. The latter case rep-
resents a “perfect” estimation, providing a performance base of
the robotic system’s capability. It was noted that the deviation
between the trials had been very small. Among these results,
the maximum values for the end-effector RMS and maximum
position errors in millimeters in 3-D, and RMS control effort in
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TABLE I
SIMULATION RESULTS FOR END-EFFECTOR TRACKING

(a) RMS POSITION ERROR AND MAX POSITION ERROR FOR THE CONTROL ALGORITHMS

. RMS Position Error [mm)]

End-eff Track Resul

nd-effector Tracking Results (Maximum Position Error [mm])
Heart Rate Fixed Varying
DataSet Animal 1 | Animal 2 | Animal 1 | Animal 3 | Animal 1 | Animal 3
Crystal Position Top Top Top Top Side Side
Peak-to-peak amplitude of POI motion [mm] 12.19 8.39 13.75 743 13.39 7.96
Receding Horizon Model Predictive Controller 0.488 0.237 0.231 0.197 0.194 0.231
with Exact Reference Information (1.428) (1.236) (0.777) (0.650) (1.542) (1.033)
Receding Horizon Model Predictive Controller 0.524 0.255 0.247 0.206 0.201 0.237
with One-Step Adaptive Filter Estimation (1.953) (1.460) (1.098) (0.917) (2.163) (1.195)
Receding Horizon Model Predictive Controller 0.481 0.235 0.229 0.195 0.191 0.230
with Generalized Adaptive Filter Estimation (1.399) (1.173) (0.767) (0.861) (1.540) (1.059)

(b) RMS CONTROL EFFORT FOR THE CONTROL ALGORITHMS
End-effector Tracking Results Control Effort [mNm]
Heart Rate Fixed Varying
DataSet Animal 1 | Animal 2 | Animal 1 | Animal 3 | Animal 1 | Animal 3
Crystal Position Top Top Top Top Side Side
Receding Horizon Model Predictive Controller 18.873 14.589 16.647 11.719 13.675 14.137
with Exact Reference Information
Receding Horizon Model Predictive Controller
with One-Step Adaptive Filter Estimation 26.685 21.801 37.991 18.010 30.402 20.027
Receding Horizon Model Predictive Controller
with Generalized Adaptive Filter Estimation 19.865 17.294 16.786 12.242 13.840 13.909
TABLE II
EXPERIMENTAL RESULTS FOR END-EFFECTOR TRACKING
(a) RMS POSITION ERROR AND MAX POSITION ERROR FOR THE CONTROL ALGORITHMS
. RMS Position Error [mm]

End-eff Tracki Resul

nd-effector Tracking Results (Maximum Position Error [mm])
Heart Rate Fixed Varying
DataSet Animal 1 Animal 2 | Animal 1 Animal 3 | Animal 1 Animal 3
Crystal Position Top Top Top Top Side Side
Peak-to-peak amplitude of POI motion [mm] 12.19 8.39 13.75 7.43 13.39 7.96
Receding Horizon Model Predictive Controller 0.344 0.162 0.163 0.171 0.161 0.165
with Exact Reference Information (1.238) 0.912) (0.780) (0.559) (0.538) (0.906)
Receding Horizon Model Predictive Controller 0.404 0.176 0.181 0.199 0.173 0.188
with One-Step Adaptive Filter Estimation (2.236) (1.395) (1.576) (1.084) (0.960) (1.022)
Receding Horizon Model Predictive Controller 0.351 0.174 0.168 0.178 0.164 0.167
with Generalized Adaptive Filter Estimation (1.291) (1.022) (0.827) (0.615) (0.572) (0.972)

(b) RMS CONTROL EFFORT FOR THE CONTROL ALGORITHMS

End-effector Tracking Results Control Effort [mNm]
Heart Rate Fixed Varying
DataSet Animal 1 | Animal 2 | Animal 1 | Animal 3 | Animal | | Animal 3
Crystal Position Top Top Top Top Side Side
Receding Horizon Model Predictive Controller | 54 379 | 98517 | 25350 | 21593 | 24390 | 27.260
with Exact Reference Information
Receding Horizon Model Predictive Controller
with One-Step Adaptive Filter Estimation 55.686 33.785 46.820 24.346 52.640 29.592
Receding Horizon Model Predictive Controller
with Generalized Adaptive Filter Estimation 34948 | 29699 | 25760 | 22082 | 24635 | 27.830

millinewton meters are summarized in Table I for simulations
and in Table II for experiments to project the worst cases.! The

!'Simulation and Experimental Results: The fixed heart rate data from animal
1 is 235 s long with a sampling rate of 404 Hz and from animal 2 is 472 s long
with a sampling rate of 257 Hz. The sampling rate of all datasets with varying
heart rate are 404 Hz. The duration of the varying heart rate data from animal
1 is 251 s for top position and 250 s for the side position. The duration for the
varying heart from animal 3 is 200 s for top position and 140 s for side position.

experimental data were collected from three calves via in vivo
clinical experiments. From first and third calves, both constant
heart rate and varying heart rate motion data were collected.
Heart rate variation was generated by employing an artificial
pacemaker. Heart rate was constant in the data from second
calf. The results shown in Tables I and II are grouped with re-
spect to type of the heart rate data collected from the animals.
The position of the sonomicrometer crystal on the heart surface,
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B-End Effector Position Error and x-Axis Reference
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Tracking results for 157-s constant heart rate heart motion data in two different scales with RHMPC with one-step adaptive filter estimation.

(a) reference signal for the x-axis. (b) Magnitude of the end-effector error (below) superimposed with the reference signal for the z-axis.

which are called “top” and “side,” respectively, and peak-to-
peak amplitude of the heart motion are also stated.

Tracking results for a constant heart rate data with the one-
step estimator in two different scales are shown in Fig. 10 and
results for varying heart rate data with the generalized adaptive
filter estimation are shown in Fig. 11. When Figs. 10(a) and 11(a)
are compared, the variations in the heart rate can be observed
from the pattern of the reference signal for x-axis in Fig. 11(A).
In Figs. 10(b) and 11(b), magnitude of the end-effector position
error superimposed on the reference signal for the z-axis is
shown. We believe that the maximum error values are affected
from the noise in the data sensor as it is unlikely that the POI
on the heart is capable of moving 5 mm in a few milliseconds.
The data have been kept as-is, without applying any filtering to
eliminate these jumps in the sensor measurements as currently
we do not have an independent set of sensor measurements (such
as from a vision sensor) that would confirm this conjecture.

It can be observed from the results presented in Table I that
in our simulations the generalized estimator outperformed the
exact heart signal in terms of RMS position error. This is likely
due a combination of two factors. First, the simulation model is a
linearized, reduced order model of the actual hardware. Second,
the estimator has a robustness characteristic that makes its output
less noisy than the actual heart data. The combination of these
two factors yields better results in the linear case. However,
when the experiment is performed on the hardware, the effects
of the nonlinearities have become apparent and the performance
of the estimator-driven controller decreases. It should be noted
that although the simulation provides valuable insight about the
effectiveness of the controller, the experimental trials are the
best indicator of performance.

When the tracking results of the adaptive predictors are com-
pared with each other, the generalized predictor outperforms the
one-step predictor in all simulations and all experiments.

From the results presented in Table II, it can be observed
that, in the experiments the controller with exact heart signal
reference performs better than the one-step estimator and the

generalized estimator in term RMS end-effector error for both
constant heart rate data and varying heart rate data. Maximum
error and control effort results for the exact heart signal are also
smaller than the tracking results of one-step and generalized es-
timators because the controller with exact heart signal reference
represents the perfect estimation for heart motion tracking.

C. Comparative Study

At this point, it would be informative to compare the presented
tracking results with the reported values in the literature.

Ginhoux et al. [8] used motion canceling through prediction
of future heart motion using high-speed visual servoing with a
model predictive controller. Their results indicated a tracking
error variance on the order of 6 to 7 pixels (approximately 1.5—
1.75 mm calculated from the 40 pixel/cm resolution reported
in [8]) in each direction of a 3-DOF tracking task. Although it
yielded better results than earlier studies using vision systems,
the error was still very large to perform heart surgery.

Bebek and Cavusoglu used the past heartbeat cycle motion
data, synchronized with the ECG data, in their estimation al-
gorithms. They achieved 0.682-mm RMS end-effector position
error on a 3-DOF robotic test-bed system [5].

Yuen et al. used an EKF algorithm with a quasi-periodic
motion model to predict the path of mitral valve motion in order
to compensate the time delay occurred from the 3-D ultrasound
(3DUS) measurements. They achieved 1.15 4= 0.004 mm RMS
tracking error for a 1-DOF motion compensation instrument
(MCI) in an in vitro 3DUS-guided servoing test. They stated that
employing the EKF-based predictor in time-delay compensation
restores the tracking performance of MCI to baseline tracking
conditions in cases of delay. They reported that the EKF gives
better predictions than the AR filtering algorithms and last cycle
method used by Bebek and Cavusoglu [5] in the presence of
high noise and heart rate variability. Yuen et al. concluded that
since the EKF explicitly models the quasi-periodic motion of
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B-End Effector Position Error and x-Axis Reference
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Tracking results for 200-s varying heart rate heart motion data in two different scales with RHMPC with generalized adaptive filter estimation.

(a) reference signal for the x-axis. (b) Magnitude of the end-effector error (below) superimposed with the reference signal for the z-axis.

the heart, it can adjust to rapid changes in heart rate better than
other algorithms [17].

An essential part of this research is to evaluate and improve
the performance of adaptive prediction algorithms under heart
rate variations. Thus, it is crucial to compare the tracking per-
formances of the proposed one-step and the generalized pre-
dictors with the EKF algorithm developed by Yuen et al. [17].
For this purpose, the same hardware experiment described in
Section VIII-B was repeated by employing the estimates gen-
erated by the EKF in the RHMPC controller. The experimental
results of these experiments, which include end-effector RMS
position errors and maximum end-effector position errors, are
presented in Table III. The results for RLS-based adaptive al-
gorithms from Table II-A are also presented in Table III for
comparison. The results of the experiments showed that the
proposed adaptive algorithms outperformed the EKF-based al-
gorithm in terms of tracking performance.

For these experiments, a 3-D harmonic model EKF was em-
ployed. EKF was implemented as described in [17]. The param-
eters were specifically tuned to minimize RMS end-effector
tracking error. Initial state was computed in the same way
as explained in [17]. State transition matrix F' was same as
in [17]. The process noise covariance () is a diagonal ma-
trix with all values set to 1073, except for ¢, correspond-
ing to w(t), which was set to 5 x 1073(rad/s)*. The initial
state estimate covariance was set to P(T'|T) = diag[o? /N, o7,
0/2%, ... 08 /m?, 02,103 rad?, ..., 10 % rad?], where m =
5 is the number of harmonics, and /N is the number of ini-
tialization points, corresponding to number of measurements
in 10 s. Standard deviation of the measurement noise was set
to 0, = 0.3 mm, which is very close to the accuracy of so-
nomicrometer (250 pm). Remaining parameters were set to
0?7 = 1mm? and 02 = 0.10 (rad/s)’.

Simulation studies similar to the ones in [17] were conducted
to compare the prediction performances of the one-step predic-
tor, generalized predictor EKF, and last-cycle methods, in order
to further investigate the tracking results presented in Table III.

In these simulations, the prediction performances of the algo-
rithms were explored in the presence of measurement noise and
heart rate variations.

In the first simulation study, the effect of measurement noise
on the predictor performance on a constant heart rate motion
data was evaluated. The motion data of POI on heart surface
were downsampled to 28 Hz and corrupted by a additive zero-
mean Gaussian noise with standard deviation 0.3 < ¢, < 3 mm
to match the conditions used in [17]. Similarly, the performance
was evaluated for one-step ahead prediction for a 10 s of data
after 30 s of initialization time for each predictor.

The EKF predictor was also implemented with the parameters
presented in that study for comparison. (These parameters were
different from the EKF parameters used in experiments that
are presented earlier.) The RMS measurement error for each
predictor obtained by averaging across 100 Monte Carlo trials
is shown in Fig. 12. Results show that EKF performs the best in
the presence of high-measurement noise when compared with
the other algorithms.

In the second simulation study, the performance of the pre-
dictors in the presence of variations in heart rate were evaluated.
The motion data were constructed similar to the way described
in [17]. First part of the data included heart motion at a constant
rate of 103 beats/min with a duration of 30 s, and the second part
was a 10 s of motion data at a different heart rate (103 + AHR
beats/min), which was varied between —10 < AHR < 10
beats/min. The motion data with varying heart rate were gen-
erated by compression and dilation of the trajectory of POI on
heart surface. Heart motion data were again downsampled to
28 Hz and corrupted with additive white Gaussian noise with
or = 1.30 mm. The performance of the predictors were evalu-
ated only for the motion with varying heart rate and for the one-
step ahead predictions. The RMS errors were computed for 100
Monte Carlo trials, and EKF was implemented again with the
parameters given in [17]. The results presented in Fig. 13 show
that EKF yielded better results than the AR filtering algorithms
and last cycle method. One step and generalized predictors
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TABLE III
EXPERIMENTAL RESULTS FOR END-EFFECTOR TRACKING: RMS END-EFFECTOR AND MAXIMUM POSITION ERRORS FOR THE CONTROLLER WITH EKF PREDICTOR

End-effector Tracking Results RMS POSiti(.)rT Error [mm]

(Maximum Position Error [mm])
Heart Rate Fixed Varying
DataSet Animal 1 Animal 2 | Animal 1 Animal 3 | Animal 1 Animal 3
Crystal Position Top Top Top Top Side Side
Receding Horizon Model Predictive Controller 0.344 0.162 0.163 0.171 0.161 0.165
with Exact Reference Information (1.238) | (0912) (0.780) | (0.559) (0.538) (0.906)
Receding Horizon Model Predictive Controller 0.404 0.176 0.181 0.199 0.173 0.188
with One-Step Adaptive Filter Estimation (2.236) (1.395) (1.576) (1.084) (0.960) (1.022)
Receding Horizon Model Predictive Controller 0.351 0.174 0.168 0.178 0.164 0.167
with Generalized Adaptive Filter Estimation (1.291) (1.022) (0.827) 0.615) 0.572) 0.972)
Receding Horizon Model Predictive Controller 1.148 0.386 0.515 0.523 0.433 0.449
with EKF Estimation (5.157) (2.863) (3.006) (2.859) (2.475) (2.796)

The results for RLS-based adaptive algorithms from Table II-A are also presented for comparison.

RAMS One-step Prediction Error vs Varying Measurement Noise
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Fig. 12.  Plot showing the RMS prediction error results for a parametric sim-

ulation study where the predictors are tested in the presence for varying mea-
surement noise at a sampling rate of 28 Hz.

RAMS One-step Prediction Error vs Varying Heart Rate
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Fig. 13.  Plot showing the RMS prediction error results for a parametric sim-
ulation study where the predictors are tested in the presence for varying heart
rate at a sampling rate of 28 Hz.

provided similar results with former giving slightly better re-
sults. Finally, the last cycle method gave comparable results to
adaptive predictors when variation in heart rate is small, yet the
prediction error increases significantly when AHR increases.

The comparison between the algorithms presented in [17]
was based on one-step prediction performances in simulation,
whereas the results reported in Table III compare algorithms
in terms of the tracking performances on a hardware test bed.
Results from the two simulation studies presented earlier agree
with the results reported in [17], indicating that EKF produces
better one-step predictions than the adaptive algorithms and the
last cycle method in the presence of high measurement noise and
variations in heart rate at a sampling rate of 28 Hz. However,
a better one-step prediction performance does not necessarily
translate to a better tracking performance because of the high
order and nonlinear dynamics of the robotic platform and the
controllers employed.

IX. DISCUSSION

The presented tracking results show that the model predictive
controller with the generalized estimator and the exact refer-
ence data performed equally well, which indicates that the main
cause of error is no longer the prediction but the performance
limitations of the robot and controller. It is important to note
that the results also need to be validated in vivo, which were the
case in [8] and [17]. This would also evaluate the robustness of
the adaptive prediction methods with respect to changing heart
statistics during CABG surgery.

The algorithms should be also tested on an actual robotic
surgical system for further validation. This system should have
lightweight links, low inertia design, and low-friction actuation
system for tracking the heart with sufficient motion and speed.
Although the test-bed system used in this study captures many
desirable features, such as high bandwidth and low inertia, it has
some shortcomings. Such a realistic prototype with desirable
characteristics is being developed [24], and evaluation on this
prototype remains as future work.

The discussion regarding the described adaptive predictors is
extended below. The following two points will further enlighten
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their analysis. In Section VII-C, it is observed that there is an
optimum sampling rate, which yields the best performance. The
assessment for the effect of sampling rate on prediction accuracy
is performed under a fixed filter order. Using a higher filter order
requires a higher sampling rate, which can decrease the amount
of noise in the estimator. However, this increases computational
load significantly, which is not desirable. Therefore, for a given
filter order, there is a tradeoff between the amount of noise in
the estimator and the computational load, which results from the
choice of sampling rate. RMS position error obtained by filter
shows that there appears to be an optimal frequency, which
balances this tradeoff.

Noise of the measurements is another issue to be considered
in the implementation of predictors. The main source of error in
the sonomicrometry system is the crystal geometry. The sound
wave is received by the leading edge of the crystal surface.
Thus, the orientation of the crystals might affect the measured
distance. This error might be approximated by a white noise
[18]. Although there might be other sources of noise, white
noise assumption is satisfactory at this point.

From all of the position tracking sensors, extracting accu-
rate and precise position information of the heart is required
for precise motion canceling performance, and therefore, an
important prerequisite for proper working of the control al-
gorithms. In this manner, sensor systems used for tracking in
beating heart surgery are crucial. Earlier studies in canceling
beating motion with robotic-assisted tools used vision-based
and ultrasound-based sensory systems to measure heart motion.
The selection of the sensor systems for use in beating heart
surgery [4], [6], [11], [12], [17], [20], [25]-[27] is critical and
deserves a detailed comparative study. However, such a com-
parison is outside the scope of this paper.

When the robotic platform contacts with the heart, heart dy-
namics are likely to change, arrthymias might occur and robot
dynamics might alter significantly. Additionally, the motion of
the heart might dampen locally as a result of this contact. There-
fore, the control scheme for surgical tasks involving a contact
between the robot and heart requires further investigation. Em-
ploying a force feedback control is a feasible approach to solve
such issues as explained by Cagneau et al. [28]. Cagneau ef al.
used a force sensor equipped robot designed for minimally in-
vasive surgery in [29] to compensate for physiological motions
in surgical tasks involving tissue contact. However, the pro-
posed force feedback controller did not perform effective mo-
tion compensation. Yuen et al. [30] used an optical force sensor
equipped motion compensation instrument to follow rapid mo-
tion of mitral valve annulus. Their proposed force controller
that employs feedforward target motion information enables the
robotic system to operate at the bandwidth of the heart motion
while simultaneously ensuring damping and providing good
disturbance rejection. However, the provided system would not
perform well in the cases of high heart rate variability and ar-
rhythmia as the tissue motion would not follow the feedforward
model predictions provided by the EKF.

Another point to discuss is the effect of using artificial pace-
makers on the heart motion dynamics. Currently, this effect is
unknown, and it remains to be studied as future work.
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X. CONCLUSION

In this paper, a one-step and a generalized estimator for pre-
dicting the horizon estimate for the model predictive controller
are presented. Three different sets of experiments are performed
with constant heart rate and varying heart rate to evaluate the per-
formance of the proposed algorithms. The experimental RMS
errors on the order of 0.160—0.350 mm obtained using the gener-
alized estimator represent a significant improvement in tracking
performance compared with earlier studies. Therefore, the esti-
mation of future POI motion is no longer the bottleneck in the
heartbeat motion tracking since the necessary amount of RMS
tracking error on the order of 100-250 psm is achieved.

Furthermore, the results showed that if the heart statistics
change, then adaptive predictors are able to adjust to these
changes sufficiently quickly and yield good tracking results.
However, if the statistics change abruptly and significantly, such
as in an arrhythmia or a contact between the robotic platform
and the heart, actions must be taken to minimize the effect of
poor predictions.

Another way to improve tracking quality is to incorporate
other types of data into the estimation scheme. One such possi-
bility is to include the electrocardiogram (ECG) signal into the
observations. This way, the predictor is able to use the electri-
cal signals that activate heart contraction in order to improve
the prediction as in [5]. This may improve performance during
heart contractions, when rapid POI motion occurs.

Future works also include multisensor fusion, where comple-
mentary and redundant sensors will be used for superior per-
formance and safety, e.g., a vision-based sensor system could
be used as a secondary sensor for the in vivo validation of
the proposed concept. Merging the sensor data from multiple
position sources would increase accuracy of the motion esti-
mation and improve tracking results. Adding more mechanical
sensors that measure heart motion would improve the measure-
ment precision and help to resolve the calibration problems of
the sonomicrometry system.
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